Implementing generalized measurements with superconducting qubits

Abstract

We describe a method to perform any generalized purity-preserving measurement of a qubit with techniques tailored to superconducting systems. First, we consider two methods for realizing a two-outcome partial projection: using a thresholded continuous measurement in the circuit QED setup and using an indirect ancilla qubit measurement. Second, we decompose an arbitrary purity-preserving two-outcome measurement into single-qubit unitary rotations and a partial projection. Third, we systematically reduce any multiple-outcome measurement to a sequence of such two-outcome measurements and unitary operations. Finally, we consider how to define suitable fidelity measures for multiple-outcome generalized measurements.

Type
Publication
Physical Review A 90, 032302
Justin Dressel
Justin Dressel
Associate Professor of Physics

Researches quantum information, computation, and foundations.