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Abstract

This thesis presents a general algebraic approach for indirectly measuring both

classical and quantum observables, along with several applications. To handle

the case of imperfectly correlated indirect detectors we generalize the observable

spectra from eigenvalues to contextual values. Eigenvalues weight spectral idem-

potents to construct an observable, but contextual values can weight more general

probability observables corresponding to indirect detector outcomes in order to

construct the same observable. We develop the classical case using the logical

approach of Bayesian probability theory to emphasize the generality of the con-

cept. For the quantum case, we outline how to generalize the classical case in a

straightforward manner by treating the classical sample space as a spectral idem-

potent decomposition of the enveloping algebra for a Lie group; such a sample

space can then be rotated to other equivalent sample spaces through Lie group

automorphisms. We give several classical and quantum examples to illustrate the

utility of our approach. In particular, we use the approach to describe the theoret-

ical derivation and experimental violation of generalized Leggett-Garg inequalities

using a quantum optical setup. We also describe the measurement of which-path

information using an electronic Mach-Zehnder interferometer. Finally, we provide

a detailed and exact treatment of the quantum weak value, which appears as a

general feature in conditioned observable measurements using a weakly correlated

detector.
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1 Introduction

It is terrible to see how a single unclear idea, a single formula
without meaning, lurking in a young man’s head, will some-
times act like an obstruction of inert matter in an artery,
hindering the nutrition of the brain, and condemning its vic-
tim to pine away in the fullness of his intellectual vigor and
in the midst of intellectual plenty.

Charles S. Peirce

Over the past century there has been a remarkable shift in the foundational

philosophy of physics. The mechanistic worldview of realistic determinism that

drove the development of the classical theory has inexorably succumbed to a

stochastic worldview of relational event potentialities. Our most fundamental

physical theories now predict only the likelihoods of and correlations between

irreversible measurement events. The age of certainty has ended [1], yielding to

the modern age of probability [2].

This shift in philosophy has not come easily, however. A historical attachment

to realism and certainty lingers in our language and our mathematical methods,

despite our acknowledgment that our theories must be irreducibly stochastic. This

conceptual dualism between certainty and stochasticity manifests most strongly

in the quantum theory, where there appear to be two inequivalent modes of evo-

lution. On one hand, the quantum state is often described as a physical entity
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that obeys continuous, deterministic, and reversible evolution. It is well described

by a wave equation, which specifies a smooth function over a static spacetime.

On the other hand, the stochasticity of the measurement process necessarily dis-

rupts this smooth evolution with discontinuous and irreversible ‘quantum jumps’

or ‘state collapse’ events. Debates still rage in the literature over the meaning

of this dualistic description, with interpretations ranging from the extremes of

a rejection of the physical status of the smoothly evolving quantum state (the

quantum Bayesian interpretation [3–5]) to a rejection of the physical status of the

discontinuous measurement events (the many-worlds/decoherence interpretation

[6–9]).

The traditional quantum theory—unified by Dirac [10] and made more rigorous

by von Neumann [11]—copes with the necessary introduction of stochasticity by

leveraging existing analogies with classical mechanics. In particular, the formalism

emphasizes the role of non-commutative observable operators that are stochastic

analogues to the intrinsic measurable properties of deterministic classical particles.

Indeed, observables underlie most core concepts in the quantum theory: commu-

tation relations of observables, complete sets of commuting observables, spectral

expansions of observables, conjugate pairs of observables, expectation values of ob-

servables, uncertainty relations between observables, and time evolution generated

by a Hamiltonian observable. Even the quantum state is introduced in terms of

the possible values that measurable observables can take. The stochasticity of the

theory manifests in a single prescription for averaging the omnipresent observables

under a smoothly and deterministically evolving quantum state: the distastefully

stochastic quantum jumps corresponding to laboratory measurements are largely

hidden by the theoretical formalism in favor of these smoothly evolving averages.

Experimental control of quantum systems has dramatically improved since

the early days of quantum mechanics, however, so the discontinuous evolution

present in the measurement process can no longer remain hidden and must now
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be more carefully investigated. Modern optical and condensed matter systems,

for example, can monitor quantum systems using weakly coupled measurement

devices (e.g., [12]), resulting in sequences of nonprojective quantum jumps that

extract partial information from the state and alter it more gently. These gentler

jumps exhibit useful features that have no counterpart in the projective jumps

assumed by the traditional theory. For example, these gentler jumps can be

conditionally reversed by subsequent measurements [13–15] to “uncollapse” the

quantum state. More generally, gentle monitoring can be non-destructive, so

measurement results can be fed forward into another device that interacts with

the system to deliberately control its subsequent evolution [16].

These modern laboratory realities have prompted a pragmatic departure from

the observable foundation of the quantum theory. Traditional observables are

operationally averaged in terms of projective jumps that strongly affect the state,

so it is overtly unclear how to correctly apply such a formalism to measurements

that only gently affect the state. The traditional formalism must be refined to

address the wider variety of stochastic events that can appear in the laboratory.

In the early 1970’s Davies [17] and Kraus [18] introduced a refinement to

the theory of quantum measurement that could address the gentler jumps that

can arise from interactions with a detecting device. Their formalism of quantum

operations, or generalized measurements, has been developed over the past forty

years to become a comprehensive and mathematically rigorous complement to

the standard quantum theory [19–27]. Quantum operations has seen the most use

in the quantum information and quantum computation communities, often with

well-supported experimental implementations in quantum optical and condensed

matter systems. However, it has not yet seen wide adoption outside of those

communities, and so has not yet been widely assimilated into the larger quantum

mechanical community.

Unlike the traditional formalism that emphasizes the observables, the quan-
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tum operations formalism emphasizes the states. Observables are mentioned in-

frequently in the quantum operations literature, appearing only in the context of

projective measurements where they are well-understood. Some references (e.g.

[24, 25, 27]) define “generalized observables” in terms of the generalized measure-

ments and detector outcome labels, but give no indication about their relationship

to traditional observables, if any. As a result, there has been a growing conceptual

gap between the traditional quantum mechanics of observables and the modern

treatment of quantum operations that encompasses a much larger class of possible

measurements than the traditional observables seemingly allow.

A possible response to this conceptual gap is to declare that measuring tra-

ditional observables is a meaningless exercise outside the context of projective

measurements. This argument is supported by the fact that any generalized mea-

surement can be understood as a part of a projective measurement being made

on a larger joint system (e.g., [24, p. 20]) that can be associated with a joint ob-

servable in the usual way. However, this argument neglects that observables still

indicate intrinsic symmetries even when measured in such a joint context. More-

over, this argument neglects the parallel research into the “weak measurement” of

observables [28–43], which strongly suggests that the notion of linking generalized

measurements to traditional observables may not be such an outlandish idea.

The possibility of weak measurements was emphasized in 1988 by Aharonov,

Albert, and Vaidman (AAV) [28] as an application of the 1932 von Neumann mea-

surement protocol [11] that uses an interaction Hamiltonian with variable coupling

strength to correlate an observable of interest to the generator of translations for

a continuous meter observable. The resulting shift in the meter observable is then

used to infer information about the observable of interest in a nonprojective man-

ner. The technique has been used to great effect in various laboratories [44–60]

to measure physical quantities like pulse delays, beam deflections, phase shifts,

polarization, and averaged trajectories. Therefore, we are forced to conclude that



5

there must be some meaningful way to reconcile generalized measurements with

traditional observables more formally.

The primary purpose of the present work is to detail a synthesis between

generalized measurements and traditional observables that is powerful enough to

encompass standard projective measurements, AAV weak measurements, and any

other type of laboratory measurement in between. To accomplish this synthesis,

we will develop an algebraic formalism in which the relevant values associated

with the measurement of an observable will depend upon how that observable

is measured. This inability to completely discuss observables without specifying

the full measurement strategy is reminiscent of Bell-Kochen-Specker contextual-

ity [61–67]—namely, the acknowledgment that quantum observables cannot have

pre-determined values without specifying the complete set of compatible measure-

ments that will be performed—which motivates us to name such measurement-

context-dependent values the contextual values (CV) for an observable. These

contextual values will form the necessary bridge between the traditional observ-

able formalism and the modern formalism of quantum operations [68–74].

The secondary purpose of the present work is to outline how both classical

probability theory and quantum operations fit together naturally. The developed

algebraic approach treats stochastic events and inference in a uniform way, so

can describe both classical and quantum probabilistic inference with the same

mathematics. Hence, the algebraic approach enables a detailed comparison of the

structural similarities between the classical and quantum probabilistic theories.

Moreover, the generality ensures that any physical system that can be described

by classical Bayesian probability theory will also be able to take full advantage of

our general observable measurement technique, and indeed take advantage of the

full theory of generalized measurements.

To accomplish these goals, this work will be organized as follows. Chapter 2

will develop the algebraic theory of classical probability starting from an a priori
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known space of possible events represented as algebraic idempotents. We will

pay special attention to generalized classical observable measurements using con-

textual values. In addition, we will pay special attention to classically invasive

measurements, as well as conditioned sequences of measurements.

Chapter 3 will extend the classical probability space to a quantum probabil-

ity space by identifying the event idempotents as the spectral idempotents for

the enveloping algebra of a Lie group. The group structure produces a continu-

ous manifold of incompatible frameworks that are each equivalent to a classical

probability space. We will discuss the new quantum features that appear when

measuring observables using contextual values due to these incompatible frame-

works. Notably, we will show that the real part of a complex quantity known

as the quantum weak value appears as a natural limit point for a conditioned

observable average under fairly general conditions.

Chapter 4 illustrates the use of the contextual value formalism by taking ad-

vantage of the strong parallels between the classical and quantum approaches to

derive and experimentally violate generalized Leggett-Garg inequalities that test

the postulates of macro-realism. We will find that these violations may be un-

derstood as a form of classically invasive measurement that can be revealed in

sequences of measurements.

Chapter 5 provides another simple but nontrivial example of the contextual

values formalism by carefully analyzing the measurement of which-path informa-

tion using a pair of coupled electronic Mach-Zehnder interferometers. The contex-

tual values formalism makes the discussion particularly transparent, despite the

thorny interpretational issues that arise. Notably, the symmetry of the detecting

setup leads to a complementarity between particle-like behavior in the system and

wave-like behavior in an efficient detector.

Chapter 6 presents a case study of the complex quantum weak value that is

enabled by our exact algebraic solution of the von Neumann measurement pro-
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tocol. This case study permits the concrete interpretation of the imaginary part

of the weak value as a logarithmic directional derivative, which directly involves

the observable in its role as a Lie algebraic group generator. This interpretation

augments the contextual values interpretation of the real part of the weak value

as a conditioned observable average. We also demonstrate that the real part of

the generalized complex weak value completely characterizes all von Neumann

measurements, making them a universal feature of that measurement protocol.

Finally, Chapter 7 provides a few concluding remarks.
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2 Classical Observable

Measurement

Common language—or, at least, the English language—has an almost uni-
versal tendency to disguise epistemological statements by putting them into
a grammatical form which suggests to the unwary an ontological statement.
A major source of error in current probability theory arises from an unthink-
ing failure to perceive this. To interpret the first kind of statement in the
ontological sense is to assert that one’s own private thoughts and sensations
are realities existing externally in Nature. We call this the ’mind projection
fallacy’, and note the trouble it causes many times in what follows. But this
trouble is hardly confined to probability theory; as soon as it is pointed out,
it becomes evident that much of the discourse of philosophers and Gestalt
psychologists, and the attempts of physicists to explain quantum theory, are
reduced to nonsense by the author falling repeatedly into the mind projection
fallacy.

Edwin T. Jaynes, (2003) [2]

Before delving into the measurement of quantum observables, we first develop

the theory of classical observable measurement. Our treatment acknowledges that

probability theory, in its most general incarnation, is a system of formal reasoning

about Boolean logic propositions [2, 75, 76]. We shall see that the algebraic

form of a mutually exclusive set of logical propositions is an idempotent-valued

measure, which will be our contact point with quantum mechanics in Chapter 3

and Appendix A.

To make the transition from the classical theory to the quantum theory more

transparent, we shall develop the classical theory using the same language as
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the modern theory of quantum operations [17–27]. This strategy will highlight

exactly where the classical and quantum theories differ and will provide useful

analogies for understanding those differences. We will pay special attention to

invasive measurements and conditioned sequences of measurements, which will be

necessary to understand the quantum generalization.

2.1 Example: Colorblind Detector

A particularly significant contribution we shall make to the operational approach

is the contextual values formalism that enables the indirect measurement of ob-

servables using imperfectly correlated logical propositions, such as those of an

ancilla detector. Without this contribution, we feel that the standard operational

approach has been incomplete. To make this new idea clear before a more formal

and comprehensive exposition, we briefly describe an illustrative example of an

ambiguous detector.

Suppose we wish to measure a marble that may be colored either red or green.

A person with normal vision can distinguish the colors unambiguously and so

would represent an ideal detector for the color state of the marble. A partially

colorblind person, however, may only guess the color correctly some percentage of

the time and so would represent an ambiguous detector of the color state of the

marble.

If the person is only mildly colorblind, then the estimations will be strongly

correlated to the actual color of the marble. The ambiguity would then be per-

turbative and could be interpreted as noise introduced into the measurement.

However, if the person is strongly colorblind, then the estimations may be only

mildly correlated to the actual color of the marble. The ambiguity becomes non-

perturbative, so the noise dominates the signal in the measurement.

We can design an experimental protocol where an experimenter holds up a
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marble and the colorblind person gives a thumbs-up if he thinks the marble is

green or a thumbs-down if he thinks the marble is red. Suppose, after testing a

large number of known marbles, the experimenter determines that a green marble

correlates with a thumbs-up 51% of the time, while a red marble correlates with

a thumbs-down 53% of the time. The experimental outcomes of thumbs-up and

thumbs-down are thus only weakly correlated with the actual color of the marble.

Having characterized the detector in this manner, the experimenter provides

the colorblind person with a very large bag of an unknown distribution of colored

marbles. The colorblind person examines every marble, and for each one records

a thumbs-up or a thumbs-down on a sheet of paper, which he then returns to

the experimenter. The experimenter then wishes to reconstruct what the average

distribution of marble colors in the bag must be, given only the ambiguous output

of his colorblind detector.

For simplicity, the clever experimenter decides to associate the colors with

numerical values: 1 for green (g) and −1 for red (r). In order to compare the

ambiguous outputs with the colors, he also assigns them different numerical val-

ues: a for thumbs-up (u), and b for thumbs-down (d). He then writes down the

following probability constraint equations for obtaining the average marble color,

〈color〉, based on what he has observed,

〈color〉 = 1P (g)− 1P (r) = aP (u) + bP (d), (2.1)

P (u) = (.51)P (g) + (.47)P (r),

P (d) = (.49)P (g) + (.53)P (r).

By inserting P (u) and P (d) into (2.1), he can rewrite the equation as a matrix
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equation in the basis of the color probabilities P (g) and P (r),

 1

−1

 =

.51 .49

.47 .53

a
b

 , (2.2)

which must be true for all P (g) and P (r). After solving this equation, he finds that

he must assign the amplified values a = 25.5 and b = −24.5 to the outcomes of

thumbs-up and thumbs-down, respectively, in order to compensate for the detector

ambiguity. After doing so, he can confidently calculate the average color of the

marbles in the large unknown bag using the identity (2.1).

The classical color observable has chosen characteristic values of 1 and −1 that

correspond to an ideal measurement. The amplified values of 25.5 and −24.5 that

must be assigned to the ambiguous detector outcomes are contextual values for

the same color observable. The context of the measurement is the characterization

of the colorblind detector, which accounts for the degree of colorblindness. The

expansion (2.1) relates the spectrum of the observable to its generalized spectrum

of contextual values. With this identity, both an ideal detector and a colorblind

detector can measure the same observable; however, the assigned values must

change depending on the context of the detector being used.

2.2 Sample space, Boolean algebra, and Observ-

ables

The space of classical observables is a commutative algebra over the reals that

we will denote ΣR
X . This choice of notation is motivated by the fact that the

observable algebra is built from and contains two related spaces, X and ΣX , that

are conceptually distinct and equally important to the theory. The three are

illustrated in Fig. 2.1 for reference. We will now briefly construct these three
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Figure 2.1: Diagram of the relationship between the sample space of atomic propo-
sitions X, the Boolean algebra of propositions ΣX , and the algebra of observables
ΣR
X . The probability state P is a measure from ΣX to the interval [0, 1]. The

expectation functional 〈·〉 is a linear extension of P that maps ΣR
X to the reals R;

by construction 〈·〉 = P (·) whenever both are defined.

spaces.

Sample spaces.—The core of a probability space is a set of mutually exclu-

sive logic propositions, X, known as the sample space of atomic propositions.

In other words, elements of the sample space, such as g, r ∈ X, represent “yes

or no” questions that cannot be answered “yes” simultaneously and cannot be

broken into simpler questions. For example, g = “Does the marble look green?”

and r = “Does the marble look red?” are valid mutually exclusive atomic propo-

sitions. To be a proper sample space, the propositions should form a complete

set, meaning that there must always be exactly one true proposition. Physically,

such propositions typically correspond to mutually independent outcomes of an

experiment that probes some system of interest. Indeed, any accessible physi-

cal property must be testable by some experiment, and any experiment can be

described by such a collection of yes or no questions.

Boolean algebra.—The atomic propositions in X can be extended to more

complex propositions by logical combination in order to form the larger space

ΣX . Specifically, we promote them to an algebra under a logical or and a logical

and. The and operation takes the algebraic form of a product, xand y = xy.

Propositions are idempotent under the product, so x2 = x. Moreover, disjoint
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propositions are trivially false under an and, xy = 0, where 0 is the trivially false

proposition. The or operation takes the algebraic form of addition such that the

redundant overlap is subsequently removed, xor y = x + y − xy. Propositions

are idempotent under the logical or, but not under the raw addition. The or

of all mutually exclusive propositions in X, which has the form of a simple sum,

is trivially true. We denote the trivially true proposition as 1X since its product

with any proposition x ∈ X leaves that proposition invariant, 1Xx = x. The

logical operation of not, or complementation (xc) with respect to X, can then

be defined as the subtraction from the trivially true proposition xc = 1X − x

since x + xc = 1X must be true for complementary disjoint propositions. The

proposition space ΣX contains X and is closed under the operations of and, or,

and not; hence, it forms a Boolean logic algebra1. Both the sum and the product

of this algebra commute.

The set X of atomic propositions is precisely the set of primitive idempotents

of ΣX that partition the trivially true proposition, 1X =
∑

X x. As idempo-

tents, they form a partial order under the product as discussed in Appendix A.4.

For a continuum of propositions in X then this partitioning process leads to an

idempotent-valued measure, 1X =
∫
X

dε(x), that takes a measurable set from a

measurable space that indexes X, such as the Borel sets on the real line, and

uniquely assigns it a corresponding proposition in ΣX . In what follows, we will

usually denote propositions simply as x for simplicity, but we shall also denote

idempotent-valued measures as dε(x) to disambiguate them from real-valued mea-

sures when necessary.

Observables.—We then extend ΣX linearly over the real numbers to obtain

the commutative algebra of observables ΣR
X . That is, any linear combination of

1In the measure theoretic version of probability theory [77–80] ΣX is known as a σ-algebra
over the set X, which motivates the notation. There ΣX is a nonempty set of subsets of X that
is closed under countable unions (or), countable intersections (and), and set complementation
(not).
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propositions F = ax + by with a, b ∈ R and x, y ∈ ΣX is an observable in ΣR
X ;

similarly any linear combination of observables H = a′F + b′G with a′, b′ ∈ R and

F,G ∈ ΣR
X is also an observable in ΣR

X . Countable sums are permitted provided

the coefficients converge. The three spaces X, ΣX , and ΣR
X are illustrated in

Fig. 2.1.

The observables combine logical propositions with numbers that describe the

relation of each proposition to some meaningful reference. For example, one could

define a simple observable A = (1)g + (−1)r that assigns a value of 1 to the

proposition asking whether a marble looks green and assigns a value of −1 to the

proposition asking whether that same marble looks red in order to distinguish

the colors by a sign. Alternatively, one can bestow a physical meaning to the

color propositions by defining a wavelength observable instead: B = (550nm)g +

(700nm)r. One could even define an observable C = ($2)g+(−$3)r that indicates

a monetary bet made on the color of the marble, with $2 being awarded for a color

of green and $3 being lost for a color of red. Such numerical labels are always

assigned by convention, but indicate physically relevant information about the

type of questions being asked by the experimenter that are answerable by the

independent propositions.

Representation.—Since it consists of idempotents that partition unity, a Boolean

algebra ΣX can be represented as the lattice of projection operators acting on a

(rigged) Hilbert space as discussed in Appendix A.7. The elements {x} of X corre-

spond to rank-1 projection operators {|x〉 〈x|} onto orthogonal subspaces spanned

by orthonormal vectors {|x〉} in the Hilbert space, or δ-normalized orthogonal

vectors in a rigged Hilbert space. Any sum of n elements of X, x1 + · · ·+ xn, cor-

responds to a rank-n projection operator |x1, . . . , xn〉 〈x1, . . . , xn| onto a subspace

spanned by n orthonormal vectors {|x1〉 , . . . , |xn〉} in the Hilbert space. The ob-

servables ΣR
X can similarly be represented as the algebra of commuting Hermitian

operators acting on the same Hilbert space. However, the algebras ΣX and ΣR
X
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need not be represented in this fashion to be well defined.

Independent Probability Observables.—We will call disjoint elements of the

Boolean algebra ΣX that partition unity independent probability observables. Unity

can be partitioned into many disjoint sets as
∑

i xi = 1X , such that xixj = δij.

Each partitioning corresponds to a particular detector arrangement that only

probes those propositions. A maximally refined partitioning is known as a closure

relation. Note that any physical experiment will involve a finite partitioning, since

one can only distinguish a finite number of outcomes in a laboratory.

Simple observables can be constructed from independent probability observ-

ables by associating a real value f(xi) to each proposition in the sum, F =∑
i f(xi)xi. The product of the observable with any of its constituent proba-

bility observables simplifies, F xi = f(xi)xi; hence, the associated values form the

set of eigenvalues for the observable. For a finite observable space ΣR
X , the set of

atomic propositions X itself is a maximally refined partition that can construct

any observable in the space,

F =
∑
x∈X

f(x)x. (2.3)

In the continuous case, one can formally construct limiting sequences of simple

observables that approximate more general observables defined as in Appendix A.4

using an idempotent-valued measure,

F =

∫
X

f(x)dε(x), (2.4)

where f(x) is a measurable function that specifies the spectrum of the observable.

Importantly, however, no experimental protocol can measure such a continuous

observable directly—only collections of approximating simple observables con-

structed from finite partitions may be probed by an experiment. Hence, in what
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follows we will largely restrict ourselves to such finite partitions as producing the

set of measurable observables.

2.3 States, Densities, and Collapse

Probability measures.—A state P is a probability measure over the Boolean algebra

ΣX , meaning that it is a linear map from ΣX to the interval [0, 1] such that

P (1X) = 1. Such a state P assigns a numerical value P (x) to each proposition

x ∈ ΣX that quantifies its degree of plausibility ; that is, P (x) formally indicates

how likely it is that the question x would be answered “yes” were it to be answered,

with 1 indicating a certain “yes” and 0 indicating a certain “no.” The value P (x)

is called the probability for the proposition x to be true. Normalizing P (1X) = 1

ensures that exactly one proposition in the sample space must be true.

For continuous spaces, the state becomes an integral. For an experimentally

accessible finite partitioning of a continuous space, each interval of the partition

can be assigned probability from a theoretically continuous state via the integral,

P (x0) =

∫
x0∈ΣX

P (dε(x)) =

∫
x0∈ΣX

dP (x), (2.5)

where the integration measure dP (x) = P (dε(x)) is defined in terms of its limiting

values on the primitive propositions.

Frequencies.—Empirically, one can check a finite set of probabilities by repeat-

edly asking a proposition in ΣX to identically prepared systems and collecting

statistics regarding the answers. For a particular proposition x ∈ ΣX , the ratio

of yes-answers to the number of trials will converge to the probability P (x) as

the number of trials becomes infinite. However, the probability has a well-defined

meaning as a plausibility prediction even without actually performing such a re-

peatable experiment. Indeed, designing good quality repeatable experiments to
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check the probabilities assigned by a predictive state is the primary goal of exper-

imental science, and is generally quite difficult to achieve.

Expectation functionals.—The linear extension of a state P to the whole ob-

servable algebra ΣR
X is an expectation functional that averages the observables,

and is traditionally notated with angled brackets 〈·〉. For a simple observable

F =
∑

x∈X f(x)x, then,

〈F 〉 =
∑
x∈X

f(x)P (x), (2.6)

is the expectation value, or average value, of F under the functional 〈·〉 that

extends the probability state P . Since 〈·〉 is linear, it passes through the sum

and the constant factors of f(x) to apply directly to the propositions x. The

restriction of 〈·〉 to ΣX is P , so 〈x〉 = P (x) as written in (2.6). The probability

state P and its linear extension 〈·〉 are illustrated in Fig. 2.1. For continuous

spaces the sum (2.6) becomes an integral of the measurable function f(x), 〈F 〉 =〈∫
X
f(x)dε(x)

〉
=
∫
X
f(x)dP (x); however, this can only be tested experimentally

using a simple observable that forms a discrete approximation of the continuous

one. Only simple observables are strictly measurable as averages of empirical

frequencies.

Moments.—The nth statistical moment of a simple observable F is 〈F n〉 =∑
x∈X f

n(x)P (x) and quantifies the fluctuations of the observable measurements

that stem from uncertainty in the state. Specifically, the observable power has

the form,

F n =
∑
x1···xn

f(x1) · · · f(xn)x1 · · · xn =
∑
x

fn(x)x, (2.7)

which empirically corresponds to measuring the observable F n times in a row

per trial on identical systems, giving a sense of the natural fluctuation of the
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observable. The final equality only holds because the propositions xi are mutually

exclusive so subsequent measurements will agree with the first, x1 · · ·xn = x1δ1···n,

and can thus be omitted as implicit in experiments. However, we will see in

Section 2.5 that this simplification of the sum need not happen for more general

measurements.

Densities.—States can often be represented as densities with respect to some

reference measure µ from ΣX to R+, which can be convenient for calculational

purposes. Just as the state P can be linearly extended to an expectation functional

〈·〉, any reference measure µ can be linearly extended to a functional 〈·〉µ.

As a familiar example from continuous spaces, such a reference functional

takes the form of an integral 〈F 〉µ =
∫
X
f(x) dµ(x). The representation of a state

as a density follows from changing the integration measure for the state to the

reference measure,

〈F 〉 =

∫
X

f(x) dP (x) =

∫
X

f(x)
dP

dµ
(x) dµ(x). (2.8)

The Jacobian conversion factor dP/dµ from the integral over the probability mea-

sure dP (x) to the integral over the reference measure dµ(x) is the probability den-

sity for P with respect to µ, also known as a Radon-Nikodym derivative [77, 81–83].

From this probability density, we can then define a state density observable,

Pµ =

∫
X

dP

dµ
(x) dε(x), (2.9)

using the appropriate idempotent-valued measure dε as discussed in Section A.4.

This state density directly relates the expectation functional 〈·〉 to the reference

functional 〈·〉µ according to the relation (2.8) rewritten as an observable product,

〈F 〉 = 〈Pµ F 〉µ . (2.10)
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For discrete partitions we can more intuitively define a state density observable

in terms of a ratio of measures,

Pµ =
∑
x∈X

P (x)

µ(x)
x. (2.11)

Then by definition and linearity, 〈PµF 〉µ = 〈F 〉, as required. Evidently, the

measure µ must be nonzero for all propositions x for which P is nonzero in order

for such a state density to be well defined. This definition as a ratio of measures

will correctly reproduce the Radon-Nikodym derivative (2.9) in the continuous

case using a limiting prescription [77].

Trace.—The reference measure that is constant for all propositions of the same

size according to their natural partial order is the trace Tr. For finite spaces the

trace is usually defined as the counting measure which evaluates to the rank of

any proposition in ΣX ; for example, given x, y, z ∈ X then (x+ y + z) ∈ ΣX is a

rank-3 proposition and Tr(x + y + z) = Tr(x) + Tr(y) + Tr(z) = 1 + 1 + 1 = 3.

Since the trace evaluates to unity on any atomic proposition in a finite space, any

state has a trace-density defined by equation (2.11) that is traditionally notated

as ρ.

ρ =
∑
x∈X

P (x)x. (2.12)

This trace-density is the only state density that is always defined and exactly

determined by the probabilities of the atomic propositions P (x). Because of this,

the trace-representation of a state can be naturally interpreted as an inner product,

〈ρ, F 〉 = Tr(ρF ) = 〈F 〉 , (2.13)

between the trace-density and the observable. The trace-density ρ will be com-

pletely equivalent to the quantum mechanical density operator when extended to
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the quantum case in Chapter 3.

For continuous spaces the counting measure diverges, so the trace is redefined

to be a multiple of the translationally-invariant Lebesgue-Stieltjes measure dx as

a reference, as discussed in Appendix A.5. The probability density with respect to

the Lebesgue-Stieltjes measure is given the simple notation p(x), so (2.8) may be

rewritten as 〈F 〉 =
∫
X
f(x) p(x) dx. It is important to remember that only finite

approximations to this state density can be empirically verified, however.

State collapse.—If a question on the probability space is answered by some

experiment, then the state indicating the plausibilities for future answers must be

updated to reflect the acquired answer. The update process is known as Bayesian

state conditioning, or state collapse. Specifically, if a proposition y ∈ ΣX is veri-

fied to be true, then the experimenter updates the expectation functional to the

conditioned functional,

〈F 〉y =
〈y F 〉
P (y)

, (2.14)

that reflects the new information. For a proposition x ∈ ΣX , the conditional

probability 〈x〉y = P (yx)/P (y) has the traditional notation P (x|y) and is read as

“the probability of x given y.”

From (2.14), any state density corresponding to P will be similarly updated

to a new density via a product,

Pµ|y =
Pµ y

P (y)
. (2.15)

Notably, conditioning the trace-density ρ on an atomic proposition y ∈ X will

collapse the density to become the proposition itself, ρy = ρ y/P (y) = y.

Note that the proposition y serves a dual role in the conditioning procedure.

First, it is used to compute the normalization probability P (y). Second, it di-
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rectly updates the state via a product action. The product indicates that future

questions will be logically linked to the answered question with the and opera-

tion; that is, the knowledge about the system has been refined by the answered

question. The process of answering a question about the system and then condi-

tioning the state on the new information is called a measurement ; moreover, since

the proposition y is a projection acting on the density, this kind of measurement

is called a projective measurement.

Bayes’ rule.—If we pick another proposition z ∈ ΣX as the observable in (2.14)

we can derive Bayes’ rule as a necessary consequence by interchanging y and z

and then equating the joint probabilities P (yz),

P (z|y) = P (y|z)
P (z)

P (y)
. (2.16)

Bayes’ rule relates conditioned expectation functionals to one another and so is a

powerful logical inference tool that drives much of the modern emphasis on the

logical approach to probability theory.

Disturbance.—Conditioning, however, is not the only way that one can alter

a state. One can also disturb a state without learning any information about it,

which creates a transition to an updated expectation functional that we denote

with a tilde 〈 ·̃ 〉 according to,

〈
F̃
〉

= 〈D(F )〉 , (2.17a)

D(F ) =
∑
x∈X

〈F 〉Dx x, (2.17b)

〈F 〉Dx =
∑
x′∈X

f(x′)Dx(x
′). (2.17c)

Here the disturbance D is a map from ΣR
X to ΣR

X that is governed by a collec-

tion of states {Dx} that specify transition probabilities Dx(x
′) from old propo-

sitions x to new propositions x′. To be normalized, the transition states must
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satisfy Dx(1X) = 1, so that 〈1X〉Dx = 1X and therefore D(1X) = 1X . Up-

dating the state according to (2.17) is also known as Bayesian belief propa-

gation [5] and is more commonly written in the fully expanded form
〈
F̃
〉

=∑
x∈X P (x)

∑
x′∈X Dx(x

′)f(x′).

Time evolution.—As an important special case, the time evolution of a Marko-

vian stochastic process is a form of disturbance Dt, parametrized by a time interval

t. No information is learned as the system evolves, so the knowledge about the

system as represented by the expectation functional can only propagate accord-

ing to the laws governing the time evolution. If the process is reversible, then

this disturbance is the adjoint map for a one-parameter Lie group that leaves

the space ΣR
X invariant. For example, if we define a time-evolving observable as

F (t) = Dt(F ) on a continuous phase space then we have dF (t)/dt = {F (t), H}p,

where {·, ·}p is defined point wise as the Poisson bracket (Lie bracket of the group)

and H is the Hamiltonian (generator in the Lie algebra). This differential equa-

tion is a phase space representation of the group equation (A.12) discussed in

Appendix A.3 using a truncation of the Moyal product as the algebraic product

between functions, and has the exponential solution Dt(F ) = exp(t{·, H}p)(F ),

where the Liouvillian {·, H}p is the induced adjoint map corresponding to H.

Correlation functions.—Correlations between observables at different times

can be obtained by inserting a time-evolution disturbance between the observ-

able measurements,

〈F (0)G(t)〉 = 〈FDt(G)〉 =
∑
x∈X

P (x)f(x)
∑
x′∈X

Dx,t(x
′)g(x′). (2.18)

Operationally this corresponds to measuring the observable F , waiting an interval

of time t, then measuring the observable G. Similarly, n-time correlations can be

defined with n − 1 time-evolution disturbances between the observable measure-

ments
〈
F1Dt1(F2 · · ·Dtn−1(Fn) · · · )

〉
. Computing the correlation of an observable
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with itself without intervening disturbance will produce a higher moment 〈F n〉.

Invasive measurement.—A system may also be disturbed during the physical

process that implements conditioning, which will alter the state above and beyond

the pure conditioning expression (2.14). With such an invasive measurement, one

conditions a state after a disturbance induced by the measurement process has

occurred; hence, one obtains a new state,

〈
F̃
〉
y

=
〈D(y F )〉
〈D(y)〉

=

∑
x∈X P (x)

∑
x′∈X Dx(y x

′)f(x′)∑
x∈X P (x)Dx(y)

, (2.19)

which is a composition of the measurement disturbance (2.17) followed by the

pure conditioning (2.14). We shall see that this sort of invasive measurement is

inescapable in the quantum case.

2.4 Detectors and Probability Observables

For a single ideal experiment that answers questions of interest with perfectly

correlated independent outcomes, knowing the spectrum of an observable for that

experiment is completely sufficient. However, in many (if not most) cases the

independent propositions corresponding to the experimental outcomes are only

imperfectly correlated with the questions of interest about the system. Since in

such a case one may not have direct access to the questions of interest, one also

may not have direct access to the observables of interest. One must instead

infer information about the observables of interest indirectly from the correlated

outcomes of the detector to which one does have access.

Joint sample space.—To handle this case formally, we first enlarge the sample

space to include both the sample space of interest, which we call the system, X

and the accessible sample space, which we call the detector, Y . Questions about

the system and the detector can be asked independently, so every question for
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the system can be paired with any question from the detector; therefore, the

resulting joint sample space must be a product space, XY = {xy |x ∈ X, y ∈ Y },

where the products of propositions from different sample spaces commute. The

Boolean algebra ΣXY and observable algebra ΣR
XY are constructed in the usual

way from the joint sample space, and contain the algebras ΣX , ΣY , ΣR
X , and ΣR

Y as

subalgebras. When represented as operators on a Hilbert space, the corresponding

joint representation exists within the tensor product of the system and detector

space representations. Each sample space thus produces an irreducible factor for

the observable algebra, exactly as discussed in Appendix A.4, where the total

product of factors is still commutative.

Product states.—If the probabilities of the system propositions are uncorrelated

with the probabilities of the detector propositions under a joint state P on the joint

sample space, then the joint state can be written as a composition of independent

states that are restricted to the sample spaces of the system and detector, P =

PX◦PY . Just as the state P has a linear extension to 〈·〉, its restrictions PX and PY

have linear extensions 〈·〉X and 〈·〉Y to their corresponding factors. Thus, for any

joint observable F an uncorrelated expectation has the form 〈F 〉 = 〈〈F 〉Y 〉X =

〈〈F 〉X〉Y . Such an uncorrelated joint state is known as a product state. The

name stems from the fact that for a simple product FXFY of system and detector

observables the corresponding joint expectation decouples into a product of system

and detector expectations separately, 〈FXFY 〉 = 〈FX〉X 〈FY 〉Y .

Similarly, general measures on the joint sample space can be product measures.

Notably, the trace Tr = TrX ◦ TrY on XY factors into partial traces, TrX and

TrY . On continuous spaces the Lebesgue-Stieltjes measure also factors, 〈F 〉 =∫
X

[
∫
Y
f(x, y)p(x, y) dy] dx =

∫
Y

[
∫
X
f(x, y)p(x, y) dx] dy.

Correlated states.—In addition to product states, the joint space admits a

much larger class of correlated states where the detector and system questions

are dependent on one another. With such a correlated state a measurement on
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the detector cannot be decoupled in general from a measurement on the system.

Information gathered from a measurement on a detector under a correlated state

will also indirectly provide information about the system, thus motivating the

term “detector.”

Reduced states.—For a pure system observable FX or a pure detector observable

FY , the average under a joint state will be equivalent to the average under a state

restricted to either the system or the detector space, known as a reduced state, or

a marginalized state. We can define such a reduced state by using the joint state

density under any reference product measure µ = µX ◦ µY , such as the trace Tr.

It then follows that,

〈FX〉 =
〈
〈Pµ〉µY FX

〉
µX

= 〈PµXFX〉µX , (2.20a)

〈FY 〉 =
〈
〈Pµ〉µX FY

〉
µY

= 〈PµY FY 〉µY . (2.20b)

The quantities PµX = 〈Pµ〉µY and PµY = 〈Pµ〉µX are the reduced state densities

that define the reduced states PX and PY with expectation functionals,

〈FX〉X = 〈PµXFX〉µX , (2.21a)

〈FY 〉Y = 〈PµY FY 〉µY . (2.21b)

By definition, 〈FX〉 = 〈FX〉X and 〈FY 〉 = 〈FY 〉Y . However, in general 〈F 〉 6=

〈〈F 〉Y 〉X and 〈F 〉 6= 〈〈F 〉X〉Y unless P is a product state. The resulting reduced

expectations 〈·〉X and 〈·〉Y are independent of the choice of reference product

functional µ.

Probability observables.—Any correlation between the system and detector in

the joint state allows us to directly relate propositions on the detector to observ-

ables on the system. We can compute the relationship directly by using a closure
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relation and rearranging the conditioning procedure (2.14) to find,

P (y) =
∑
x∈X

P (x)P (y|x) =

〈∑
x∈X

P (y|x)x

〉
= 〈Ey〉X , (2.22)

Ey =
∑
x∈X

P (y|x)x. (2.23)

The resulting set of system observables {Ey} exactly correspond to the detector

outcomes {y}. Analogously to a set of independent probability observables, they

form a partition of the system identity, but are indexed by detector propositions

rather than by system propositions,
∑

y∈Y Ey = 1X . Such a set {Ey} has the

common name positive operator-valued measure (POVM) [22], since it forms a

measure over the detector sample space Y consisting of positive operators when

represented on a Hilbert space. However, we shall make an effort to refer to

them as general probability observables to emphasize their physical significance.

As long as the detector outcomes are not mutually exclusive with the system, the

probability observables (2.23) will be a faithful representation of the reduced state

of the detector in the observable space of the system.

Process tomography.—The probability observables are completely specified by

the conditional likelihoods P (y|x) for a detector proposition y to be true given

that a system proposition x is true. Such conditional likelihoods are more com-

monly known as response functions for the detector and can be determined via

independent detector characterization using known reduced system states; such

characterization is also known as detector tomography, or process tomography.

State tomography.—Any good detector will maintain its characterization when

it is coupled to any unknown reduced system state. That is, a noninvasive coupling

of such a good detector to an unknown system produces a correlated joint state

according to P (xy) = PX(x)P (y|x), where PX is the unknown reduced system

state prior to the interaction with the detector. This is useful precisely because
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the unknown state can then be determined from the measured joint probabilities

P (xy) and the known response functions P (y|x) as PX(x) = P (xy)/P (y|x), which

is a procedure known as state tomography.

Generalized state collapse.—In addition to allowing the computation of detec-

tor probabilities, P (y) = 〈Ey〉X , probability observables also have the dual role

of updating the reduced system state following a measurement on the detector.

To see this, we apply the general rule for state collapse (2.14) for a detector

proposition y on the joint state to find,

〈FX〉y =
〈y FX〉
P (y)

=
∑
x∈X

fX(x)P (y|x)
PX(x)

P (y)
=
〈EyFX〉X
〈Ey〉X

, (2.24)

which can be seen as a generalization of the Bayesian conditioning rule (2.14)

to account for the effect of an imperfectly correlated detector, and can also be

understood as a form of Jeffrey’s conditioning [84]. For this reason, probability

observables are commonly called effects of the generalized measurement. A re-

duced state density PµX for the system updates as PµX |y = PµX Ey/ 〈Ey〉X . Such

a generalized measurement is nonprojective, so is not constrained to the disjoint

questions on the sample space of the system. As a result, it answers questions on

the system space ambiguously or noisily.

Weak measurement.—The extreme case of such an ambiguous measurement is

a weak measurement, which is a measurement that does not (appreciably) collapse

the system state. Such a measurement is inherently ambiguous to the extent

that only a minuscule amount of information is learned about the system with

each detection. Formally, the probability observables for a weak measurement

are all nearly proportional to the identity on the system space. Typically, an

experimenter has access to some control parameter ε (such as the correlation



28

strength) that can alter the weakness of the measurement such that,

∀y, lim
ε→0

Ey(ε) = PY (y)1X , (2.25)

where PY (y) ∈ (0, 1) is the nonzero probability of obtaining the detector out-

come y in the absence of any interaction with the system. Then for small val-

ues of ε the measurement leaves the system state nearly unperturbed, PµX |y =

PµX Ey(ε)/ 〈Ey(ε)〉X ≈ PµX . The limit as such a control parameter ε → 0 is

known as the weak measurement limit and is a formal idealization not strictly

achievable in an experiment.

Strong measurement.—The opposite extreme case is a strong measurement

or projective measurement, which is a measurement for which all outcomes are

independent, as in (2.3). The projective collapse rule (2.14) can therefore be seen

as a special case of the general collapse rule (2.24) from this point of view.

Measurement sequences.—A further benefit of the probability observable rep-

resentation of a detector is that it becomes straightforward to discuss sequences of

generalized measurements performed on the same system. For example, consider

two detectors that successively couple to a system and have the outcomes y and

z measured, respectively. To describe the full joint state of the system and both

detectors requires a considerably enlarged sample space. However, if the detectors

are characterized by two sets of probability observables {Ey} and {E ′z} we can

immediately write down the probability of both outcomes to occur as well as the

resulting final collapsed system state without using the enlarged sample space,

P (yz) = 〈E ′zEy〉X , (2.26a)

〈FX〉yz =
〈E ′zEyFX〉X
〈E ′zEy〉X

. (2.26b)

Similarly, a conditioned density takes the form PµX |yz = PµX E
′
zEy/ 〈E ′zEy〉X . The
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detectors have been abstracted away to leave only their effect upon the system of

interest.

Generalized invasive measurement.—The preceding discussion holds provided

that the detector can be noninvasively coupled to a reduced system state PX to

produce a joint state P (xy) = PX(x)P (y|x). However, more generally the process

of coupling a reduced detector state PY to the reduced system state PX will disturb

both states as discussed for (2.17). The disturbance produces a joint state from

the original product state of the system and detector according to,

〈x̃y〉 = 〈〈D(xy)〉Y 〉X , (2.27)

D(xy) =
∑
x′∈X

∑
y′∈Y

Dx′,y′(xy)x′y′, (2.28)

where Dx′,y′ are states specifying the joint transition probabilities for the distur-

bance. The noninvasive coupling P (xy) = PX(x)P (y|x) is a special case of this

where the reduced system state is unchanged by the coupling.

As a result, we must slightly modify the derivation of the probability observ-

ables (2.22) to properly include the disturbance,

〈ỹ〉 = 〈〈D(y)〉Y 〉X =
〈
Ẽy

〉
X
, (2.29a)

Ẽy = 〈D(y)〉Y =
∑
x∈X

∑
y′∈Y

PY (y′)Dx,y′(y)x. (2.29b)

The modified probability observable Ẽy includes both the initial detector state PY

and the disturbance from the measurement. Detector tomography will therefore

find the effective characterization probabilities P̃ (y|x) =
∑

y′∈Y Dx,y′(y)PY (y′).

The generalized collapse rule similarly must be modified to include the distur-



30

bance,

〈
F̃X

〉
y

=
〈〈D(y FX)〉Y 〉X
〈〈D(y)〉Y 〉X

=
〈Ey(FX)〉X〈

Ẽy

〉
X

, (2.30)

Ey(FX) = 〈D(y FX)〉Y =
∑
x′∈X

x′
∑
y′∈Y

PY (y′)
∑
x∈X

Dx′,y′(y x)f(x). (2.31)

Surprisingly, we can no longer write the conditioning in terms of just the proba-

bility observables Ẽy; instead we must use an operation Ey that takes into account

both the coupling of the detector and the disturbance of the measurement in an

active way. The measurement operation is related to the effective probability

observable according to, Ey(1X) = Ẽy.

The change from observables to operations when the disturbance is included

becomes particularly important for a sequence of invasive measurements. Con-

sider an initial system state PX that is first coupled to a detector state PY via a

disturbance D1, then conditioned on the detector proposition y, then coupled to

a second detector state PZ via a disturbance D2, and finally conditioned on the

detector proposition z. The joint probability for obtaining the ordered sequence

(y, z) can be written as

〈
〈D1(y 〈D2(z)〉Z)〉Y

〉
X

=
〈
Ey(Ẽ

′
z)
〉
X
. (2.32)

The effective probability observable Ey(E
′
z(1X)) = Ey(Ẽ

′
z) for the ordered measure-

ment sequence (y, z) is no longer a simple product of the probability observables

Ẽy and Ẽ ′z as in (2.26a), but is instead an ordered composition of operations.

The ordering of operations also leads to a new form of postselected conditioning.

Specifically, if we condition only on the second measurement of z in an invasive
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sequence (y, z), we obtain,

〈ỹ〉z =

〈
Ey(Ẽ

′
z)
〉
X∑

y′∈Y

〈
Ey′(Ẽ ′z)

〉
X

=

〈
Ey(Ẽ

′
z)
〉
X〈

E(Ẽ ′z)
〉
X

, (2.33)

E(Ẽ ′z) =
∑
y′∈Y

Ey′(Ẽ
′
z) =

〈
D(Ẽ ′z)

〉
Y
. (2.34)

The different position of the subscript serves to distinguish the postselected prob-

ability 〈ỹ〉z from the preselected probability 〈ỹ〉z =
〈
E′z(Ẽy)

〉
X
/
〈
Ẽ ′z

〉
X

corre-

sponding to the reverse measurement ordering of (z, y). The operation E appear-

ing in the denominator is called a nonselective measurement since it includes the

disturbance induced by the measurement coupling, but does not condition on any

particular detector outcome. When the disturbance to the reduced system state

vanishes, the conditioning becomes order-independent and both types of condi-

tional probability reduce to P (y|z) = 〈EyE ′z〉X / 〈E
′
z〉X .

The two forms of conditioning for invasive measurements in turn lead to a

modified form of Bayes’ rule that relates the preselected conditioning of a sequence

to the postselected conditioning of the same sequence,

〈ỹ〉z = 〈z̃〉y
〈Ey〉X〈
E(Ẽ ′z)

〉
X

. (2.35)

When the disturbance to the reduced system state vanishes, the nonselective mea-

surement E reduces to the identity operation, 〈ỹ〉z reduces to P (y|z), 〈z̃〉y reduces

to P (z|y), and we correctly recover the noninvasive Bayes’ rule (2.16).

2.5 Contextual Values

Observable correspondence.—With the preliminaries about generalized state con-

ditioning out of the way, we are now in a position to discuss the measurement
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of observables in more detail. First we observe an important corollary of the ob-

servable representation of the detector probabilities P (y) = 〈Ey〉X from (2.22):

detector observables can be mapped into equivalent system observables,

〈FY 〉 =
∑
y∈Y

fY (y)P (y) = 〈FX〉X , (2.36)

FX =
∑
y∈Y

fY (y)Ey. (2.37)

Note that the eigenvalues fX(x) =
∑

y∈Y fY (y)P (y|x) of the equivalent system

observable FX are not the same as the eigenvalues fY (y) of the original detector

observable FY , but are instead their average under the detector response. If

the system propositions were accessible then the system observable FX would

allow nontrivial inference about the detector observable FY , provided that the

probability observables were nonzero for all y in the support of FY .

Contextual values.—A more useful corollary of the expansion (2.37) is that

any system observable that can be expressed as a combination of probability

observables may be equivalently expressed as a detector observable,

FX =
∑
y∈Y

fY (y)Ey =⇒ FY =
∑
y∈Y

fY (y) y, (2.38)

which is the classical form of our main result. Using this equivalence, we can

indirectly measure such system observables using only the detector. We dub the

eigenvalues of the detector observable fY (y) the contextual values (CVs) of the

system observable FX under the context of the specific detector characterized by a

specific set of probability observables {Ey}. The CVs form a generalized spectrum

for the observable since they are associated with general probability observables

for a generalized measurement and not independent probability observables for a

projective measurement; the eigenvalues are a special case when the probability

observables are the spectral projections of the observable being measured.
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With this point of view, we can understand an observable as an equivalence

class of possible measurement strategies for the same average information. That

is, using appropriate pairings of probability observables and CVs, one can measure

the same observable average in many different ways, 〈FX〉 =
∑

x∈X fX(x)P (x) =∑
y∈Y fY (y) 〈Ey〉X . Each such expansion corresponds to a different experimental

setup.

Moments.—Similarly, the nth statistical moment of an observable can be mea-

sured in many different, yet equivalent, ways. For instance, the nth moment of an

observable FX can be found from the expansion (2.38) as,

〈(FX)n〉 =

〈
(
∑
y∈Y

fY (y)Ey)
n

〉
X

=
∑

y1,...,yn∈Y

fY (y1) · · · fY (yn) 〈Ey1 · · ·Eyn〉X .

(2.39)

By examining the general collapse rule for measurement sequences (2.26a) we ob-

serve that the quantity 〈Ey1 · · ·Eyn〉X must be the joint probability for a sequence

(y1, · · · , yn) of n noninvasive measurements that couple the same detector to the

system n times in succession. As we anticipated in Section 2.3, the multiple sums

do not collapse in the general case, so the average in (2.39) is explicitly different

from
∑

y∈Y (fY (y))nP (y) = 〈(FY )n〉, which is the nth statistical moment of the

raw detector results.

We conclude that, for imperfectly correlated noninvasive detectors, we can

perform measurement sequences to obtain the correct statistical moments of an

observable using a particular set of CVs. Only for unambiguous measurements

with independent probability observables do such measurement sequences reduce

to simple powers of the eigenvalues being averaged with single measurement prob-

abilities. If a single measurement by the detector is done per trial, then only the

statistical moments of the detector observable FY can be inferred from that set of

CVs, as opposed to the true statistical moments of the inferred system observable
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FX .

We can, however, change the CVs to define new observables that correspond to

powers of the original observable, such as GX = (FX)n =
∑

y∈Y gY (y)Ey. These

new observables can then be measured indirectly using the same experimental

setup without the need for measurement sequences. The CVs gY (y) for the nth

power of FX will not be simple powers of the CVs fY (y) for FX unless the mea-

surement is unambiguous.

Invasive measurements.—If the measurement is invasive, then the disturbance

forces us to associate the CVs with the measurement operations {Ey} and not

solely with their associated probability operators {Ẽy} in order to properly handle

measurement sequences as in (2.31). Specifically, we must define the observable

operation,

FX =
∑
y∈Y

fY (y)Ey, (2.40)

which produces the identity FX(1X) =
∑

y∈Y fY (y)Ẽy = FX similar to (2.38).

Correlated sequences of invasive observable measurements can be obtained by

composing the observable operations,

〈(FX)n(1X)〉X =
∑

y1,...,yn

fY (y1) · · · fY (yn)
〈
Ey1(Ey2(· · · (Ẽyn) · · · ))

〉
X
. (2.41)

Such an n-measurement sequence reduces to the nth moment (2.39) when the

disturbance vanishes.

If time evolution disturbance Dt is inserted between different invasive observ-

able measurements, then we obtain an invasive correlation function instead,

〈
˜FX(0)GX(t)

〉
= 〈FX(Dt(GX(1X)))〉X . (2.42)
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When the observable measurements become noninvasive, then this correctly re-

duces to the noninvasive correlation function (2.18). Similarly, n-time invasive

correlations can be defined with n − 1 time-evolution disturbances between the

invasive observable measurements
〈
F1(Dt1(F2(· · ·Dtn−1(Fn(1X)) · · · )))

〉
.

Conditioned averages.—In addition to statistical moments of the observable,

we can also use the CVs to construct principled conditioned averages of the ob-

servable. Recall that in the general case of an invasive measurement sequence

we can condition the observable measurement in two distinct ways. If we con-

dition on an outcome z before the measurement of FX we obtain the preselected

conditioned average
〈
F̃X

〉
z

defined in (2.30). On the other hand, if the invasive

conditioning measurement of z happens after the invasive observable measurement

then we must use the postselected conditional probabilities (2.33) to construct a

postselected conditioned average,

〈
F̃X

〉
z

=
∑
y∈Y

fY (y) 〈ỹ〉z =

∑
y∈Y fY (y)

〈
Ey(Ẽ

′
z)
〉
X∑

y∈Y

〈
Ey(Ẽ ′z)

〉
X

=

〈
FX(Ẽ ′z)

〉
X〈

E(Ẽ ′z)
〉
X

. (2.43)

The observable operation FX and the nonselective measurement E encode the rel-

evant details from the first measurement. When the disturbance to the reduced

system state vanishes, both the preselected and the postselected conditioned aver-

ages simplify to the pure conditioned average 〈FX〉z defined in (2.24) that depends

only on the system observable FX .

While the pure conditioned average 〈FX〉z is independent of the order of con-

ditioning and is always constrained to the eigenvalue range of the observable, the

postselected invasive conditioned average
〈
F̃X

〉
z

can, perhaps surprisingly, stray

outside the eigenvalue range with ambiguous measurements. The combination of

the amplified CVs and the disturbance can lead to a postselected average that lies

anywhere in the full CV range, rather than just the eigenvalue range. We will see

an example of this in Sec. 2.5.2.
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Inversion.—So far we have treated the CVs in the expansion (2.38) as known

quantities. However, for a realistic detector situation, the CVs will need to be

experimentally determined from the characterization of the detector and the ob-

servable that one wishes to measure. The reduced system state PX will generally

not be known a priori, since the point of a detector is to learn information about

the system in the absence of such prior knowledge. We can still solve for the CVs

without knowledge of the system state, however, since the probability observables

are only specified by the conditional likelihoods P (y|x) that can be obtained in-

dependently from detector tomography.

To solve for the CVs when the system state is presumed unknown, we rewrite

(2.38) in the form,

FX =
∑
x∈X

x
∑
y∈Y

P (y|x)fY (y) =
∑
x∈X

x 〈FY 〉x = S(FY ), (2.44)

where S =
∑

x x 〈·〉x is the map that converts observables in the detector space

to observables in the system space S : ΣR
Y → ΣR

X . Our goal is to invert this map

and solve for the required spectrum of FY given a desired system observable FX .

However, the inverse of such a map is not generally unique; for it to be uniquely

invertible it must be one-to-one between system and detector spaces of equal size.

If the detector space is smaller than the system, then no exact inverse solutions

are possible; it may be possible, however, to find course-grained solutions that

lose some information. Perhaps more alarmingly, if the detector space is larger

than the system, then it is possible to have an infinite set of exact solutions.

When disturbance is taken into account as in (2.29), the equality (2.44) be-

comes,

FX = 〈D(FY )〉Y = S(FY ), (2.45)



37

so the composition of the disturbance D and the detector expectation 〈·〉Y pro-

duces the map S that must be inverted. Equation (2.44) is a special case when

the reduced system state is unchanged by the coupling disturbance.

Pseudoinversion.—The entire set of possible solutions to (2.45) may be com-

pletely specified using the Moore-Penrose pseudoinverse of the map S, which we

denote as S+. The pseudoinverse is the inverse of the restriction of S to the space

ΣR
Y \{F ∈ ΣR

Y | S(F ) = 0}; that is, the null space of S is removed from the detector

space before constructing the inverse. We will show a practical method for com-

puting the pseudoinverse using the singular value decomposition in the examples

to follow.

Using the pseudoinverse, all possible solutions of (2.45) can be written com-

pactly as,

FY = S+(FX) + (I− S+S)(G), (2.46)

where I is the identity map and G ∈ ΣR
Y is an arbitrary detector observable. The

solutions specified by the pseudoinverse in this manner contain exact inverses and

course-grainings as special cases.

Detector variance.—Since (I−S+S) is a projection operation to the null space

of S, the second term of (2.46) lives in the null space of S and is orthogonal to

the first term. Therefore, the norm squared of FY has the form,

||FY ||2 =
∑
y

(fY (y))2 = ||S+(FX)||2 + ||(I− S+S)(G)||2, (2.47)

making the G = 0 solution have the smallest norm.

The norm ||FY || of the CV solution is relevant because the second moment

of the detector observable FY is simply bounded by the norm squared 〈(FY )2〉 =∑
y P (y)(fY (y))2 ≤ ||FY ||2. The second moment is similarly an upper bound for
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the variance of the detector observable Var(FY ) = 〈(FY )2〉 − (〈FY 〉)2 ≤ 〈(FY )2〉.

Therefore, the norm squared is a reasonable upper bound for the detector variance

that one can make without prior knowledge of the state.

Mean-squared error.—The variance of FY governs the mean-squared error of

any estimation of its average with a finite sample, such as an empirically measured

sample in a laboratory. Specifically, one measures a sequence of detector outcomes

of length n, (y1, y2, . . . , yn), and uses this finite sequence to estimate the average

of FY via the unbiased estimator,

FY =
1

n

n∑
i

fY (yi), (2.48)

that converges to the true mean value 〈FY 〉Y = 〈FX〉 as n → ∞. The mean

squared error of this estimator MSE(FY ) from the true mean is the variance over

the number of trials in the sequence Var(FY )/n. Hence, the maximum mean

squared error for a finite sequence of length n must be bounded by the norm

squared of the CVs divided by length of the sequence,

MSE(FY ) =
Var(FY )

n
≤ ||FY ||

2

n
. (2.49)

That is, the norm bounds the number of trials necessary to obtain an experimen-

tal estimation of observable averages to a desired precision using the imperfect

detector.

Pseudoinverse prescription.—Choosing the arbitrary observable to be G = 0

therefore not only picks the solution FY = S+(FX) that is uniquely related to FX

by discarding the irrelevant null space of S, but also picks the solution with the

smallest norm, which places a reasonable upper bound on the statistical error.

Without prior knowledge of the system state, the pseudoinverse solution does

a reasonable job at obtaining an optimal fit to the relation (2.45). Moreover,
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when (2.45) is not satisfied by the direct pseudoinverse then an exact solution

is impossible, but the pseudoinverse still gives the “best fit” coursegraining of

an exact solution in the least-squares sense. As such, we consider the direct

pseudoinverse of FX to be the preferred solution in the absence of other motivating

factors stemming from prior knowledge of the state being measured.

2.5.1 Example: Ambiguous Marble Detector

As an illustrative example similar to the one given in the introduction, suppose

that one wishes to know whether the color of a marble is green or red, but one is

unable to examine the marble directly. Instead, one only has a machine that can

display a blue light or a yellow light after it examines the marble color. In such a

case, the marble colors are the propositions of interest, but the machine lights are

the only accessible propositions. The lights may be correlated imperfectly with

the marble color; for instance, if a blue light is displayed one may learn something

about the possible marble color, but it may still be partially ambiguous whether

the marble is actually green or actually red.

The relevant Boolean algebra for the system is ΣX = {0, g, r, 1X}, where g

is the proposition for the color green, r is the proposition for the color red, and

1X = g+r is the logical or of the two possible color propositions. We consider the

task of measuring a simple color observable FX = (+1)g+(−1)r that distinguishes

the colors with a sign using an imperfectly correlated detector.

The relevant Boolean algebra for the detector is ΣY = {0, b, y, 1Y }, where b

is the proposition for the blue light, y is the proposition for the yellow light, and

1Y = b+y. In order to measure the marble observable FX using only the detector,

the experimenter must determine the proper form of the corresponding detector

observable FY .

First, the experimenter characterizes the detector by sending in known samples
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and observing the outputs of the detector. After many characterization trials,

the experimenter determines to some acceptable precision the four conditional

probabilities,

P (b|g) = 0.6, P (y|g) = 0.4, (2.50a)

P (b|r) = 0.2, P (y|r) = 0.8, (2.50b)

for the detector outcomes b and y given specific marble preparations g and r.

These characterization probabilities completely determine the detector response

in the form of its probability observables (2.23),

Eb = P (b|g)g + P (b|r)r, (2.51a)

Ey = P (y|g)g + P (y|r)r. (2.51b)

By construction, Eb + Ey = g + r = 1X .

Second, the experimenter expands the system observable FX using the detector

probability observables (2.51) and unknown contextual values (CVs) fY (b) and

fY (y) (2.38),

FX = (+1)g + (−1)r = fY (b)Eb + fY (y)Ey. (2.52)

After expressing this relation as the equivalent matrix equation,+1

−1

 =

P (b|g) P (y|g)

P (b|r) P (y|r)

fY (b)

fY (y)

 , (2.53)

it can be directly inverted to find the CVs (2.46),

fY (b) = 3, fY (y) = −2. (2.54)
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Therefore,

FX = (+1)g + (−1)r = (3)Eb + (−2)Ey, (2.55)

so FX can be inferred from a measurement of the equivalent detector observable

FY = (3)b+ (−2)y.

Notably, the CVs (2.54) are amplified from the eigenvalues of ±1 due to the

ambiguity of the detector. The amplification compensates for the ambiguity so

that the correct average can be obtained after measuring an ensemble of many

unknown marbles described by the initial marble state PX . The amplification also

leads to a larger upper bound for the variance (2.47) of the detector,

||FY ||2 = 13. (2.56)

Hence, we can expect the imperfect detector to display a root-mean-squared

(RMS) error (2.49) in the reported average color that is no larger than
√

13/n ≈

3.6/
√
n after n repeated measurements. For contrast, a perfect detector would

display an RMS error no larger than
√

2/n ≈ 1.4/
√
n after n repeated measure-

ments.

2.5.2 Example: Invasive Ambiguous Detector

In addition to being ambiguous, the marble color detection apparatus in the last

example Section 2.5.1 could be generally invasive. That is, the act of making a

measurement of the marble color could probabilistically change the color of the

marble. In such a case, the characterization probabilities (2.50) composing the

probability observables (2.51) would be a combination of the initial state of the

detector lights PY and a disturbance D from the measurement coupling according
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to (2.29),

P̃ (b|g) = PY (b)(Dg,b(g b) +Dg,b(r b)) + PY (y)(Dg,y(g b) +Dg,y(r b)), (2.57a)

P̃ (y|g) = PY (b)(Dg,b(g y) +Dg,b(r y)) + PY (y)(Dg,y(g y) +Dg,y(r y)), (2.57b)

P̃ (b|r) = PY (b)(Dr,b(g b) +Dr,b(r b)) + PY (y)(Dr,y(g b) +Dr,y(r b)), (2.57c)

P̃ (y|r) = PY (b)(Dr,b(g y) +Dr,b(r y)) + PY (y)(Dr,y(g y) +Dr,y(r y)), (2.57d)

where we have used the marginalization identity Dc,d(b) = Dc,d(g b) + Dc,d(r b)

for c ∈ {g, r} and d ∈ {b, y}. For a noninvasive detector, the transition proba-

bilities that involve marbles changing color must be zero Dg,b(r b) = Dg,b(r y) =

Dg,y(r y) = Dg,y(r b) = Dr,b(g b) = Dr,b(g y) = Dr,y(g b) = Dr,y(g y) = 0. However,

they need not be zero for a general invasive detector.

As an example, suppose that the initial detector state is unbiased, PY (b) =

PY (y) = 1/2, and that the detector has a 10% chance of flipping the color of a given

marble. The following possible values for the sixteen transition probabilities would

then lead to the same effective characterization probabilities (2.50) as before,

Dg,b(g b) = 0.5 Dg,y(g b) = 0.5, (2.58a)

Dg,b(g y) = 0.3 Dg,y(g y) = 0.3, (2.58b)

Dr,b(r b) = 0.1 Dr,y(r b) = 0.1, (2.58c)

Dr,b(r y) = 0.7 Dr,y(r y) = 0.7, (2.58d)

Dg,b(r b) = 0.1 Dg,y(r b) = 0.1, (2.58e)

Dg,b(r y) = 0.1 Dg,y(r y) = 0.1, (2.58f)

Dr,b(g b) = 0.1 Dr,y(g b) = 0.1, (2.58g)

Dr,b(g y) = 0.1 Dr,y(g y) = 0.1. (2.58h)

Since the effective characterization probabilities are the same, the probability



43

observables are the same as (2.51), leading to the same CVs as (2.54) to measure

the observable FX = (+1)g+(−1)r. However, the number of probabilities needed

to completely characterize the measurement being made to account for disturbance

has quadrupled from four to sixteen.

The disturbance of the reduced marble state will become apparent only when

making a second measurement after the first one. Suppose we make a second

measurement of the marble colors g and r directly. The probability of obtaining

a detector outcome d ∈ {b, y} and then observing a specific marble color c ∈

{g, r} will then be PX(g)(PY (b)Dg,b(c d)+PY (y)Dg,y(c d))+PX(r)(PY (b)Dr,b(c d)+

PY (y)Dr,y(c d)). If we define an operation as in (2.31) to be,

Ed(c) = 〈D(c d)〉Y , (2.59)

= g (PY (b)Dg,b(c d) + PY (y)Dg,y(c d)) + r (PY (b)Dr,b(c d) + PY (y)Dr,y(c d)),

then we can express the probability for the sequence compactly as 〈Ed(c)〉X .

Averaging the outcomes for the detector lights using the CVs (2.54) and then

conditioning on a particular marble color c in the second measurement produces

a postselected conditioned average of the marble colors (2.43) as reported by the

invasive ambiguous detector,

〈
F̃X

〉
c

=
fY (b) 〈Eb(c)〉X + fY (y) 〈Ey(c)〉X

〈Eb(c)〉X + 〈Ey(c)〉X
. (2.60)

If we also preselect the marbles to be a particular color, we can compute the

pre- and postselected conditioned averages of the marble colors as reported by the

invasive ambiguous detector from (2.54), (2.58), and (2.60),

〈
F̃X

〉
g g

= 1.125, (2.61a)〈
F̃X

〉
r g

= 0.5, (2.61b)
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〈
F̃X

〉
g r

= 0.5, (2.61c)〈
F̃X

〉
r r

= −1.375. (2.61d)

Due to a combination of the invasiveness and the ambiguity of the measure-

ment, the postselected conditioned averages can stray outside the eigenvalue range

[−1, 1] for the observable FX . However, they remain within the CV range [−2, 3].

When the measurement is noninvasive, then the pre- and postselected conditioned

averages in (2.61) that remain well-defined reduce to the pure conditioned averages

〈FX〉g = 1 and 〈FX〉r = −1.

2.5.3 Example: Redundant Ambiguous Detector

As another variation, consider a similar marble detection setup similar to the

example in Section 2.5.1, but where the detector apparatus has not two, but

three independent outcome lights: blue, yellow, and purple. Hence, the detector

Boolean algebra is ΣY = {0, b, y, p, b + y, b + p, y + p, 1Y }, where p is the new

proposition for the purple light, and 1Y = b + y + p. After characterizing the

detector the experimenter finds the conditional probabilities,

P (b|g) = 0.5, P (y|g) = 0.3, P (p|g) = 0.2, (2.62a)

P (b|r) = 0.1, P (y|r) = 0.7, P (p|r) = 0.2, (2.62b)

that define the probability observables,

Eb = P (b|g)g + P (b|r)r, (2.63a)

Ey = P (y|g)g + P (y|r)r, (2.63b)

Ep = P (p|g)g + P (p|r)r. (2.63c)
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By construction, Eb + Ey + Ep = 1X . Furthermore, Ep = (0.2)1X , so the pur-

ple outcome cannot distinguish whether the marble is green or red and can be

imagined as a generic detector malfunction outcome.

The experimenter now has a choice for how to assign CVs to a detector ob-

servable FY in order to infer the marble observable FX = (+1)g+(−1)r. A simple

choice is to ignore the redundant (and nondistinguishing) purple outcome by zero-

ing out its CV fY (p) = 0, and then invert the remaining relationship analogously

to (2.53) to find fY (b) = 3.125 and fY (y) = −1.875. The variance bound for this

simple choice is ||FY ||2 = 13.2813, leading to a root-mean-squared error no larger

than
√

13.2813/n ≈ 3.6/
√
n after n repeated measurements.

However, a better choice is to find the preferred values for all three outcomes

using the pseudoinverse (2.46) of the map between FY and FX . To do this, we

write a matrix equation similar to (2.53) that uses all three outcomes,

+1

−1

 = S

fY (b)

fY (y)

 , (2.64a)

S =

P (b|g) P (y|g) P (p|g)

P (b|r) P (y|r) P (p|r)

 . (2.64b)

The pseudoinverse S+ can be constructed by using the singular value decompo-

sition, S = UΣVT , where U is an orthogonal matrix composed of the normalized

eigenvectors of SST , V is an orthogonal matrix composed of the normalized eigen-

vectors of STS, and Σ is a diagonal matrix composed of the singular values of

S (which are the square roots of the eigenvalues of SST and STS). After com-

puting the singular value decomposition, the pseudoinverse can be constructed

as S+ = VΣ+UT , where Σ+ is the diagonal matrix constructed by inverting all

nonzero elements of ΣT . Performing this inversion we find the following preferred
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CV,

S+ =
5

36


15 −7

−3 11

3 1

 , (2.65a)


fY (b)

fY (y)

fY (p)

 = S+

+1

−1

 =
5

18


11

−7

1

 =


3.05̄

−1.94̄

0.27̄

 . (2.65b)

This preferred solution has the smallest variance bound of ||FY ||2 = 13.1944.

We find (counterintuitively) that even though the purple outcome itself cannot

distinguish the marble color, the fact that one obtains a purple outcome at all

still provides some useful information to the experimenter due to the asymmetry

of the blue and yellow outcomes. Indeed, if for the red marble we instead found

the symmetric detector response P (b|r) = 0.3, P (y|r) = 0.5, and P (p|r) = 0.2,

the pseudoinverse would produce the preferred CVs fY (b) = 5, fY (y) = −5, and

fY (p) = 0, indicating that the purple outcome was truly noninformative.

A less principled approach to solving (2.64) would be for the experimenter to

assign a completely arbitrary value to one outcome, like fY (b) = B. The CV

relation still produces a matrix equation,+1−BP (b|g)

−1−BP (b|r)

 =

P (y|g) P (p|g)

P (y|r) P (p|r)

fY (y)

fY (p)

 , (2.66)

that can be solved to find,

fY (y) = B − 5, fY (p) = 12.5− 4B. (2.67)

The bound for the variance of this solution is ||FY ||2 = 18B2 − 110B + 181.25 ≥

13.1944; the value of B that minimizes the bound is B = 3.05̄, which recovers the
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pseudoinverse solution.

Although picking an arbitrary solution gives mathematically equivalent results,

the experimenter will only increase the norm of the solution without any physical

motivation. As such, the higher moments of the detector observable FY can be

correspondingly larger, and more trials may be necessary for the estimated average

of the system observable FX to reach the desired precision.

2.5.4 Example: Continuous Detector

Consider the extreme example of a marble color detector that has a continuum of

outcomes, such as the position of impact of a marble on a continuous screen. In

such a case, the detector sample space Y is indexed by a real parameter y ∈ R,

and the relevant Boolean algebra ΣY can be chosen to be the set of all Borel

subsets of the real line [77, 78].

After characterizing the detector, the experimenter finds that the detector

displaces its initial probability distribution dPY (y) = pY (y) dy by an amount z

from the zero-point according to which marble-color is sent into the detector,

dP (y|g) = dPY (y − z), dP (y|r) = dPY (y + z). (2.68)

These probabilities define the probability observables,

dE(y) = g dP (y|g) + r dP (y|r), (2.69)

such that
∫
R dE(y) = 1X .

To infer information about the marble observable FX using this detector, the

experimenter must assign a continuum of CVs fY (y) such that,

FX = (+1)g + (−1)r =

∫
R
fY (y) dE(y), (2.70)
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or in matrix form, +1

−1

 = S[fY ] =

∫R fY (y) dPY (y − z)∫
R fY (y) dPY (y + z)

 . (2.71)

Since fY is a function, S is a vector-valued functional, which is why we adopt the

square-bracket notation.

In this case, the detector outcomes are overwhelmingly redundant. However,

we can pick the least norm solution using the pseudoinverse of the map S as before.

To do so, we first calculate SST ,

ST =
(
pY (y − z) pY (y + z)

)
, (2.72a)

SST =

 a b(z)

b(z) a

 , (2.72b)

where,

a =

∫
R
pY (y) dPY (y) =

∫
R
p2
Y (y) dy, (2.73a)

b(z) =

∫
R
pY (y + z)pY (y − z) dy, (2.73b)

and we find its eigenvalues of a+ b(z) with corresponding normalized eigenvector

(1, 1)/
√

2 and a−b(z) with corresponding normalized eigenvector (−1, 1)/
√

2. We

can then construct the orthogonal matrix U composed of the normalized eigen-

vectors of SST and the diagonal matrix Σ composed of the square roots of the
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eigenvalues of SST ,

U =
1√
2

1 −1

1 1

 , (2.74)

Σ =

√a+ b(z) 0

0
√
a− b(z)

 . (2.75)

Next we calculate the relevant eigenfunctions of STS that correspond to the

same nonzero eigenvalues a± b(z) of SST ; the remaining eigenfunctions belong to

the nullspace of S and do not contribute. Specifically, we have,

STS[h](y) =pY (y − z)

∫
R
h(y) dPY (y − z) (2.76)

+ pY (y + z)

∫
R
h(y)dPY (y + z),

where h is an arbitrary function. Then the equations,

STS[v+](y) =(a+ b(z)) v+(y), (2.77a)

STS[v−](y) =(a− b(z)) v−(y), (2.77b)

define the normalized eigenfunctions,

v+(y) =
pY (y − z) + pY (y + z)√

2(a+ b(z))
, (2.78a)

v−(y) = −pY (y − z)− pY (y + z)√
2(a− b(z))

, (2.78b)

which allows us to construct the relevant part of the orthogonal map VT ,

VT [h] =
(∫

v+(y)h(y) dy
∫
v−(y)h(y) dy

)
, (2.79)

completing the nonzero part of the singular value decomposition of S = UΣVT .
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Finally, we construct the pseudoinverse,

S+ = VΣ+UT , (2.80)

=

(
v+(y)√

2(a+b(z))
− v−(y)√

2(a−b(z))
v+(y)√

2(a+b(z))
+ v−(y)√

2(a−b(z))

)
,

and solve for the appropriate CV fY (y) of the red/green observable FX in (2.70),

fY (y) = S+

+1

−1

 =
pY (y − z)− pY (y + z)

a− b(z)
, (2.81)

where a and b(z) are as defined in (2.73).

The pseudoinverse solution (2.81) contains only the physically relevant de-

tector state density pY and provides direct physical intuition about the detection

process. Namely, everything in the shifted distribution corresponding to the green

marble pY (y − z) is associated with the eigenvalue +1, while everything in the

shifted distribution corresponding to the red marble pY (y + z) is associated with

the eigenvalue −1. The overall amplification factor a − b(z) indicates the dis-

crepancy between the overlap of the shifted distributions and the distribution

autocorrelation. The more the shifted distributions overlap, the more ambiguous

the measurement will be, so the amplification factor makes the CVs larger to

compensate. If the shifted distributions do not overlap, then b(z) → 0 and the

only amplification comes from the autocorrelation a that indicates the ambiguity

of the intrinsic profile of the detector state. Moreover, the support of the CVs

is equal to the support of both shifted detector distributions, which is physically

satisfying.

The bound for the detector variance using the pseudoinverse solution is ||fY ||2 =

2/[a− b(z)], which depends solely on the amplification factor in the denominator.

If the measurement is strong, such that a − b(z) = 1, then the variance bound

reduces to the ideal variance bound of 2, as expected, leading to a maximum
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RMS error of
√

2/n. Any additional ambiguity of the measurement stemming

from distribution overlap or distributed autocorrelation amplifies the maximum

RMS error by a factor of
√

1/[a− b(z)].

Contrast these preferred values with the generic linear solution fY (y) = y/z,

which also satisfies (2.70) when pY is symmetric about its mean [28, 34, 68].

While the generic solution could be argued to be simpler in form, it provides no

information about the detector and provides no physical insight into the meaning

or origin of the values themselves. It has nonzero support in areas where the

detector has zero support and even gets progressively larger in regions that will

not contribute to the average. Moreover, the bound for the detector variance

diverges, indicating that the RMS error can in principle be unbounded. Hence,

despite the mathematical equivalence, the linear solution is physically inferior as

a solution when compared to the pseudoinverse (2.81).



52

3 Quantum Observable

Measurement

We have to remember that what we observe is not nature herself, but nature
exposed to our method of questioning.

Werner Heisenberg, (1958) [85]

To transition from the classical theory of observable measurement to the quan-

tum theory we shall now treat the Boolean algebra ΣR
X derived in Chapter 2 as

a commutative subalgebra of the enveloping algebra E(g) for a noncommutative

Lie group G discussed in Appendix A. This approach serves to illustrate the myr-

iad similarities between the quantum and classical probabilistic theories, while

also highlighting their key differences. We shall see that the contextual-value for-

malism for indirect observable measurement is essentially unchanged, despite the

modifications that must be made to the operational theory of measurement.

3.1 Sample Spaces and Observables

Quantum sample space.—The quantum theory of probability forms a superstruc-

ture on the classical theory of probability in the following sense: given a classical

sample space X, the corresponding quantum sample space can be obtained as the

orbit of X under the action of a simply connected Lie group. That is, the en-
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tire classical sample space X can be rotated to a different classical sample space

X ′ = AdU(X) under the action of some group element U ∈ G. We call each

classical sample space generated in this fashion a framework to be consistent with

other recent work [86]. The collection of all such continuously connected classical

sample spaces is the quantum sample space, which we will notate as Q(X) to

emphasize that it can be generated from X.

Representation.—If the sample space X is represented as a set of orthogo-

nal rank-1 projections {|x〉 〈x|} on a Hilbert space, the rotated sample space

X ′ = AdU(X) will be represented by a different set of orthogonal projections

{AdU( |x〉 〈x|)} on the same Hilbert space, as discussed in Appendix A.7. Any

such group action AdU is a rotation in the Hilbert space and will have a spinor

representation (see, e.g., [87–91]) as a two-sided product with a unitary rotor Û ,

such that Û †Û = Û Û † = 1̂, and (Û †)† = Û . The involution (†) is the adjoint

with respect to the inner product of the Hilbert space. While the projections

{|x〉 〈x|} correspond to subspaces spanned by vectors {|x〉} in the Hilbert space,

the rotated projections {U † |x〉 〈x| U} correspond to subspaces spanned by ro-

tated vectors {U † |x〉}. The representation of the quantum sample space Q(X)

will therefore consist of all possible rank-1 projections on the complex Hilbert

space in which the classical sample space X is represented.

Since the Hilbert space representation of a unitary rotor Û generally contains

complex numbers in order to satisfy the group relations, the Hilbert space also

becomes complex. However, it is important to note that the complex structure

arises solely from the representation of the group and will not appear directly in

any calculable quantity to follow1. In what follows we shall tend to use the shorter

algebraic notation x and adopt the equivalent Hilbert space notation |x〉 〈x| as

a projector onto a Hilbert space vector |x〉 only when it readily simplifies ex-

1See [89–92] for discussion on purely real algebraic representations of the relativistic Dirac
electron to drive home this point.
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pressions. Similarly, we will omit the operator notation Û and † in favor of the

algebraic notation U and ∗ for the group elements. We will also abbreviate adjoint

group actions AdU as the operations U.

Quantum observables.—Each classical framework X has an associated Boolean

algebra ΣX and space of measurable observables ΣR
X exactly as previously dis-

cussed. The space of measurable quantum observables is the collection of all

measurable classical observables that are independently constructed in all the

classical frameworks in Q(X). We will denote this space as ΣR
Q(X). Measurable

quantum observables are therefore constructed entirely with real numbers that

have empirical meaning for a laboratory setting; hence, their representations on

a complex Hilbert space will be Hermitian operators.

For observables in the same framework A,B ∈ ΣR
X , we find that U(A)U(B) =

U∗AUU∗BU = U∗ABU = U(AB), meaning that the group rotations preserve the

algebraic product. As a corollary, all observables in ΣR
Q(X) can be obtained by

rotating observables constructed in a single framework ΣR
X ; hence, our previous

discussion of observables in Chapter 2 carries over to the quantum theory essen-

tially unaltered. All measurable quantum observables are equivalent to classical

observables in a particular framework.

Furthermore, the independence of the propositions in a framework X remains

unaltered by unitary rotation, so every other framework X ′ has the same num-

ber of independent propositions. Thus, the number of independent propositions

is an invariant known as the quantum dimension; for a representation it fixes

the dimension of the Hilbert space. Similarly, the identity and zero observables

are invariants, so are the same in every framework and unique in the quantum

observable algebra. This feature is expected from the Lie group discussion in

Appendix A.4.

Since each different framework forms a separate well-behaved classical sample

space, the entire preceding discussion about classical probability theory applies
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unaltered when restricted to a particular framework in the quantum theory. All

observables constructed in a particular framework will commute with each other.

We expect distinctly quantum features to appear only when comparing elements

from different frameworks.

Noncommutativity.—The unitary rotations U are generally noncommutative

and so introduce noncommutativity into the quantum theory that is not present

in the classical theory. Specifically, given A,B ∈ ΣR
X , A′ = U(A), and B′ = V(B),

then A′B′ = U †AUV †BV 6= B′A′, since U and V do not necessarily commute with

each other or with A and B. That is, the noncommutativity of the observables

stems directly from the noncommutativity of the Lie group. As a result, the

Boolean algebras corresponding to different frameworks are incompatible with each

other: propositions from one framework cannot form a Boolean logical and with

propositions from a different framework. We shall see in the next section, however,

that the notion of disturbance followed by a logical and can be generalized to the

noncommutative setting in the form of the projection postulate.

Disturbance.—All nonconditioning disturbance operations D in the quantum

theory are postulated to be group rotation operations U; a classical disturbance

(2.17) must then be a group rotation that happens to leave the framework invari-

ant. Indeed, we shall see that the parallels between the quantum theory and the

classical theory with disturbance are quite strong when one interprets all unitary

rotations as a form of classical disturbance.

Time Evolution.—As an example, the continuous time-evolution of a closed

quantum system is specified by a disturbance in the form of a one-parameter

group rotation Ut with corresponding rotor Ut, known as a propagator. This

propagator is precisely the exponential map of a Hamiltonian generator discussed

in Appendix A.2.
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3.1.1 Example: Polarization

As an example quantum system we shall pick the simplest possible nontrivial sys-

tem: a qubit. Specifically, we will consider the polarization degree of freedom of a

laser beam. Suppose we are interested in measuring the linear polarization of the

beam with respect to the surface of an optical table. We denote the polarization

direction parallel to the table as “horizontal” (h) and the direction perpendicular

to the table as “vertical” (v). Although we casually refer to the polarizations h

and v as if they were properties of the light beam, the propositions h and v opera-

tionally refer to two independent outcomes of a polarization distinguishing device,

such as a polarizing beam splitter, that can be implemented in the laboratory.

The two orthogonal polarizations form a classical sample space X = {h, v}

and a classical Boolean algebra ΣX = {0, h, v, 1X}, where 1X = h + v, similar

to the classical sample space for the marble colors considered in Sec. 2.5.1. By

extending the Boolean algebra over the reals to ΣR
X as before we can define classical

observables FX = a h + b v in this sample space, such as the Stokes observable

SX = h− v that distinguishes the polarizations with a sign.

We can represent the commutative observable algebra ΣR
X as diagonal 2 × 2

matrices,

h =

1 0

0 0

 , v =

0 0

0 1

 , FX =

a 0

0 b

 , (3.1)

which can also be understood as commuting Hermitian operators over a two-

dimensional Hilbert space. The atomic propositions h = |h〉 〈h| and v = |v〉 〈v|

are projectors that correspond to disjoint subspaces spanned by the orthonormal



57

Jones’ polarization basis for the Hilbert space,

|h〉 =

1

0

 , |v〉 =

0

1

 . (3.2)

To obtain the full quantum sample space Q(X) from X, we introduce the group

of possible polarization rotations. Algebraically, an arbitrary rotation U(FX) =

U †FXU can be readily understood in terms of its rotor U , which is an element of

the group SU(2) and can be parametrized, for example, in terms of the Cartan

decomposition Uα,β,γ = exp(iασz/2) exp(iβσy/2) exp(iγσz/2), which for a qubit

happens to correspond to an Euler angle decomposition of a three-dimensional

rotation2. Here iσz and −iσy are two of the three generators of the Lie algebra

for SU(2) in terms of the standard Pauli matrices,

σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (3.3)

Since the group generators have been given a complex matrix representation, the

unitary rotation Uα,β,γ will also have a complex matrix representation,

ei
α
2
σz =

eiα2 0

0 e−i
α
2

 , (3.4a)

ei
β
2
σy =

 cos β
2

sin β
2

− sin β
2

cos β
2

 , (3.4b)

Uα,β,γ =

 ei(α+γ)/2 cos β
2

ei(α−γ)/2 sin β
2

−e−(α−γ)/2 sin β
2

e−i(α+γ)/2 cos β
2

 . (3.4c)

The algebraic involution U †α,β,γ is the complex transpose in the matrix represen-

2See Appendix A.8 for a discussion of how such a qubit arises from the constraints of space-
time.
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tation.

Physically, the factor exp(iβσy/2) corresponds to a rotation of the apparatus

around the axis of the light beam by an angle β/2, while the factors exp(iασz/2)

and exp(iγσz/2) correspond to the action of phase plates that shift the relative

phases of h and v by α/2 and γ/2, respectively. Hence, the ubiquitous quantum

phase also appears as a consequence of the unitary rotations.

Using the unitary rotations, we can generate other incompatible frameworks

Uα,β,γ(X) = {Uα,β,γ(h),Uα,β,γ(v)} in Q(X),

Uα,β,γ(h) = U †α,β,γhUα,β,γ =

 cos2 β
2

1
2
e−iγ sin β

1
2
eiγ sin β sin2 β

2

 , (3.5a)

Uα,β,γ(v) = U †α,β,γvUα,β,γ =

 sin2 β
2

−1
2
e−iγ sin β

−1
2
eiγ sin β cos2 β

2

 , (3.5b)

which depend solely on the two parameters β and γ. The atomic propositions of

such a rotated framework are projectors corresponding to each disjoint subspace

spanned by an orthonormal Jones’ polarization basis,

U †α,β,γ |h〉 =

e−i(α+γ)/2 cos β
2

e−i(α−γ)/2 sin β
2

 , (3.6a)

U †α,β,γ |v〉 =

−ei(α−γ)/2 sin β
2

ei(α+γ)/2 cos β
2

 . (3.6b)

that is a rotation of the Jones’ basis (3.2).

Physically, one could in principle construct an apparatus corresponding to such

a rotated framework using three laboratory elements: (1) attach a tunable phase

plate to the incident port of a polarizing beam splitter with the fast axis aligned to

the table, (2) rotate both the beam splitter and attached phase plate with respect

to the table, and (3) attach a second tunable phase plate to the incident port of
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the first phase plate with the fast axis aligned to the table. Of course this is only

one possible parametrization for the unitary rotations; other parametrizations will

correspond to other experimental implementations.

It follows that any observable in the full quantum observable space ΣR
Q(X) can

be obtained by rotating a classical observable FX = a h + b v to the appropriate

framework,

FX′ = Uα,β,γ(FX) = aUα,β,γ(h) + bUα,β,γ(v), (3.7)

=

a+b
2

+ a−b
2

cos β a−b
2
e−iγ sin β

a−b
2
eiγ sin β a+b

2
− a−b

2
cos β

 ,

where we have used the matrix representations in (3.5). We see that a general

qubit observable depends on four parameters: the eigenvalues a and b, as well

as the framework orientation angles β and γ. The complex representation of an

observable stems solely from the unitary rotation of the atomic propositions h and

v to a different relative framework. The observables no longer generally commute

since the unitary rotations need not commute.

3.2 States, Densities, and Collapse

Quantum states.—A quantum state P is a classical state defined in a particu-

lar framework X that is then extended to apply to the entire quantum Boolean

algebra ΣQ(X). The extension of a classical state P that has been defined in a

framework X to a proposition x′ = U(x) ∈ X ′ = U(X) in a different framework

can be accomplished by heuristically breaking down the state into a composi-

tion of the classical state in framework X and transition probabilities Dx(x
′) that
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connect the framework X to the different framework X ′,

P (x′) =
∑
x∈X

P (x)Dx(x
′). (3.8)

The transition probabilities characterize a disturbance (2.17) that connects the

classical state P to propositions in incompatible frameworks.

To define the transition probabilities, we assume that atomic propositions in

the framework X are undisturbed, so Dx(x) = 1. The only classical state with

this property is the pure state which has a projector for a trace-density (2.12)

ρ = x. Hence, we assume that we can consistently write the transition probability

Dx(x
′) in terms of the extension of the trace to the full Boolean algebra ΣQ(X),

Dx(x
′) = Tr (x x′) . (3.9)

Notably, this definition makes the transition between frameworks symmetric.

Born rule.—We pick the trace extension to be the unique measure that satisfies

the cyclic property Tr (AB) = Tr (BA) for all A,B ∈ ΣQ(X) and agrees with the

classical trace (2.13) within any specific framework [93], which is exactly the trace

defined in Appendix A.5. On a Hilbert space, (3.9) has the familiar form,

Dx(x
′) = Tr ( |x〉 〈x| |x′〉 〈x′|) = |〈x|x′〉|2, (3.10)

which we immediately recognize as the Born rule [94]. Hence, the complex square

of the Hilbert space inner product can be seen as a disguised form of the natural

extension of the trace to define transition probabilities between propositions in

incompatible frameworks. If we recall that x′ = U(x) = U∗xU we can also write

the transition probability (3.10) in terms of the unitary rotor that connects the

two propositions, Dx(x
′) = Tr

(
|x〉 〈x| U † |x〉 〈x| U

)
= |〈x| U |x〉|2.

Density operator.—We can rewrite (3.8) in a more familiar form by using
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the Born rule (3.9) and the full trace-density (2.12) of the original state ρ =∑
x∈X P (x)x, which is traditionally known as the density operator,

P (x′) =
∑
x∈X

P (x)Tr (x x′) = Tr (ρ x′) . (3.11)

This form of the probability functional conforms to Gleason’s theorem [95]. We

note, however, that it is the extension of the trace that extends the state to

the noncommutative quantum setting since the trace-density ρ is identical to a

classical trace-density in some particular framework X.

Moments.—Since the probabilities P (x′) are well-defined for a proposition in

any framework x′ ∈ X ′, we can linearly extend P to an expectation functional 〈·〉

on the entire quantum observable algebra ΣR
Q(X),

〈FX′〉 =
∑
x′∈X′

fX′(x
′)P (x′) = Tr (ρFX′) . (3.12)

Similarly, observable moments will be well-defined by the expectation functional,

〈(FX′)n〉 =
∑
x′∈X′

fnX′(x
′)P (x′) = Tr (ρ (FX′)

n) . (3.13)

Hence, the unitary rotations and resulting extension of the trace completely con-

struct the quantum probability space from a single classical probability space and

its associated observables.

Double-sided and.—To be consistent with the assumptions made in (3.9),

we must also ensure that conditioning a quantum state on an atomic proposi-

tion will collapse the state to a pure state with a trace-density equal to that

atomic proposition. In other words, we must generalize the logical and of the

classical case to the noncommutative incompatible frameworks in the quantum

case. The consistent way to do this is through a double-sided product, which
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stems from the algebraic property (A.14) of primitive idempotents discussed in

Appendix A.4. That is, given atomic propositions x ∈ X and x′ ∈ X ′ then

x′xx′ = |x′〉 〈x′|x〉 〈x|x′〉 〈x′| = Tr (xx′)x′ = Dx(x
′)x′, so the constant λ in (A.14)

is identified with a transition probability.

The double-sided product with x′ produces a transition probabilityDx(x
′) from

x to x′ as a proportionality factor in addition to collapsing the original proposition

x to x′. In this sense, the double-sided product includes a form of disturbance in

addition to the logical and of pure classical conditioning. If X = X ′, so the

frameworks coincide, then x and x′ will commute; the disturbance will vanish,

reducing the transition probability Dx(x
′) to either 0 or 1; and, the classical and

will be recovered as a special case.

Lüders’ rule.—Using the double-sided product as a disturbance followed by a

logical and, we find the quantum form of the invasive conditioning rule (2.19),

〈
F̃X

〉
y

=
〈yFXy〉
P (y)

= Tr (ρy FX) , (3.14a)

ρy =
yρy

Tr (ρy)
, (3.14b)

for any Boolean proposition y in a framework algebra ΣX measured prior to the

observable FX . As with the classical case, we use the tilde to indicate the intrinsic

quantum invasiveness of the measurement process. If ρ and y commute, or if FX

and y commute, then the noninvasive classical conditioning rule (2.14) is properly

recovered. This generalization of (2.19) is known as the projection postulate, or

Lüders’ Rule [96]. If y is an atomic proposition in X, then ρy = y as in the

classical case (2.14) and we consistently recover the assumption (3.9).

For contrast, Leifer and Spekkens [5] provide a careful quantum generaliza-

tion of the noninvasive conditioning rule (2.14) using a formalism based around

conditional density operators. They confirm that Lüder’s Rule (3.14) cannot be

obtained with pure conditioning, so it must imply additional disturbance from the
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measurement process itself, as indicated here.

Aharonov-Bergmann-Lebowitz rule.—Just as with classical invasive condition-

ing, the order of conditioning will generally matter. Specifically, substituting

a system proposition z ∈ ΣX into (3.14) yields 〈z̃〉y = P (yzy)/P (y); however,

P (yzy) 6= P (zyz), so the “joint probability” in the numerator is order-dependent

unless y and z commute, just as in (2.32). That is, 〈z̃〉y explicitly describes the case

when the conditioning proposition y is measured first as a preselection, followed

by the proposition z.

To obtain the converse case when the conditioning proposition z is measured

second as a postselection, we must derive the quantum form of (2.33). As in

the classical case, we reinterpret the denominator of (3.14) as a marginalization

P (y) =
∑

z P (yzy) of the ordered joint probability that renormalizes the con-

ditioning procedure; the identity
∑

z z = 1X permits the equality. With this

interpretation, the postselected form of conditioning becomes straightforward,

〈ỹ〉z =
P (yzy)∑

y′∈Y P (y′zy′)
. (3.15)

As in the classical case, the different position of the subscript serves to distin-

guish the two conditioned expectations 〈 ·̃ 〉z and 〈 ·̃ 〉z corresponding to different

measurement orderings.

For a pure state ρ = x = |x〉 〈x| , this postselected conditioning is known

as the Aharonov-Bergmann-Lebowitz (ABL) rule [97], and has the form 〈ỹ〉z x =

|〈z|y〉|2|〈y|x〉|2/
∑

y′∈Y |〈z|y′〉|2|〈y′|x〉|2. Unlike Lüders’ rule (3.14), the generalized

ABL rule (3.15) does not perform a simple update to the trace-density ρ; moreover,

it depends on the entire disturbance of the first measurement via the normalization

sum in the denominator. If y and z commute, then the disturbance vanishes and

we again correctly recover the classical case (2.14) that is order-independent.

Bayes’ rule.—The two forms of quantum invasive conditioning also lead to a
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modified form of Bayes’ rule that relates the preselected conditioning of a sequence

to the postselected conditioning of the same sequence, similarly to the classical

case (2.35),

〈ỹ〉z = 〈z̃〉y
P (y)∑

y′∈Y P (y′zy′)
. (3.16)

If y and z commute, then the disturbance vanishes and we correctly recover Bayes’

rule (2.16).

The unusual form of (3.15) has led to postselected quantum conditioning be-

ing largely overlooked. The lack of symmetry in the density update under such

postselected conditioning has even prompted works in multistate-density time-

symmetric reformulations of quantum mechanics [28, 30–32, 35, 36, 98], which are

outside the scope of this work. However, we see here that the form of the con-

ditioning is the same as the classically invasive postselected conditioning (2.33).

Later we shall use a fully generalized form of the ABL rule (3.15) together with

CVs to consider the subtle case of postselected averages of observables in some

detail, so we delay their consideration for now.

3.2.1 Example: Polarization State

A quantum state for a single system is a classical state in some particular frame-

work. For a two-dimensional framework such as {h, v}, all probabilities for such a

classical state can be completely specified by a mixing angle θ such that P (h) =

cos2(θ/2) and P (v) = sin2(θ/2). Hence, after rotating the trace-density ρ =

P (h)h + P (v)v to an arbitrary framework according to (3.7), any quantum state
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trace-density of polarization must have the form,

ρθ,β,γ = cos2(θ/2)Uα,β,γ(h) + sin2(θ/2)Uα,β,γ(v), (3.17)

=
1

2

1 + cos β cos θ e−iγ sin β cos θ

eiγ sin β cos θ 1− cos β cos θ

 .

The α parameter of the rotation disappears in favor of the θ parameter charac-

terizing the classical state, leaving only three net parameters, in contrast to the

four parameters of an arbitrary observable (3.7).

The expectation functional 〈·〉θ,β,γ is then defined from the trace-density ρθ,β,γ

and the unique extension of the trace Tr to the whole observable algebra ΣR
Q(X)

according to 〈FX′〉θ,β,γ = Tr(ρθ,β,γ FX′). The trace extension is the sum of the

diagonal matrix elements in the matrix representation. Hence for the expectation

of an arbitrary observable (3.7) under an arbitrary state (3.17) we find,

〈Uα′,β′,γ′(FX)〉θ,β,γ =
a+ b

2
+
a− b

2
(cos θ) Ξ, (3.18a)

Ξ = cos β cos β′ + sin β sin β′ cos(γ − γ′), (3.18b)

where Ξ ∈ [−1, 1] is an interference factor that depends only on the relative

orientation between the state framework and the observable framework. If the

frameworks coincide, then Ξ = 1 and the classical result is recovered.

3.3 Detectors and Probability Observables

Joint observable space.—As with the classical case, we can couple a system to a

detector by enlarging the sample space to the product space XY of a particular

pair of frameworks. We can then perform local unitary rotations on each space

independently to form a joint quantum sample space from the classical joint ob-

servables Q(X)Q(Y ). However, the quantum observable space also admits global
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unitary rotations on the classical joint observables to form a larger joint quantum

sample space Q(XY ). Just as with a single sample space, any two propositions

in Q(XY ) can be continuously connected with some global unitary rotation. This

decomposition of a global Lie group action into factors that act independently on

subgroups is precisely as discussed in Appendix A.4.

The full quantum observable space ΣR
Q(XY ) is constructed from Q(XY ) in the

usual way. Product observables will maintain their product form under local

unitary rotations, UX(VY (AXBY )) = UX(AX)VY (BY ). However, global unitary

rotations can create unfactorable correlated joint observables in ΣR
Q(XY ) even from

product observables U(AXBY ).

Joint states.—Similarly, joint states on a classical product framework extend

to joint quantum states on the quantum product observable space. Under local

unitary rotations, product states remain product states and classically correlated

states between two specific frameworks remain classically correlated. However,

global unitary rotations performed on any state can also form entangled states

that have no analog in the commutative classical theory [99]. Entangled states

have some degree of local-rotation-independent correlation between frameworks, so

display a stronger degree of correlation than can even be defined with a classically

correlated state that is restricted to a single joint framework. As an extreme

example, maximally entangled states are completely local-rotation-independent

and perfectly correlated with respect to any joint framework.

Quantum operations.—The specifics of entanglement do not concern us here,

since any type of correlation is sufficient to represent detector probabilities within

the reduced system space. For the purposes of measurement, we only assume

that the correlated state with density ρ = U∗(ρXρY ) = UρXρYU
∗ is connected

to some initial product state with density ρXρY via a unitary rotation U∗. Since

all quantum states can be continuously connected with some global unitary ro-

tation that acts as a disturbance (2.27), this is always possible. Physically, the
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unitary rotation couples the known detector state ρY to an unknown system state

ρX . Furthermore, we assume that the initial state of the detector has some (not

necessarily unique) pure-state expansion that is meaningful with respect to the

preparation procedure ρY =
∑

y′∈Y ′ P
′(y′)y′.

It then follows that the numerator for the conditioning rules (3.14) and (3.15)

becomes,

〈yFXy〉 = Tr(ρyFXy) = TrX(TrY (UρXρYU
∗yFXy)), (3.19)

= 〈Ey(FX)〉X = TrX(E∗y(ρX)FX),

with the operations Ey and E∗y defined as,

Ey(FX) = 〈U∗yFXyU〉Y =
∑
y′∈Y ′

P ′(y′)TrY (y′U∗yFXyU), (3.20a)

=
∑
y′∈Y ′

M †
y,y′FXMy,y′ ,

E∗y(ρX) = TrY (yUρXρYU
∗y) =

∑
y′∈Y ′

P ′(y′)TrY (yUρXy
′U∗y), (3.20b)

=
∑
y′∈Y ′

My,y′ρXM
†
y,y′ ,

My,y′ = eiφy,y′
√
P ′(y′) 〈y| U |y′〉 , (3.20c)

M †
y,y′ = e−iφy,y′

√
P ′(y′) 〈y′| U † |y〉 . (3.20d)

Here, the Hilbert space representations of the Kraus operators {My,y′} have the

form of partial matrix elements and are only well-defined up to the arbitrary

phase factors eiφy,y′ . We also stress that {My,y′} depend not only on the measured

detector outcome y, but also on a particular detector preparation y′.
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As a result, we find the quantum versions of the probability observables (2.29),

P (y) = 〈Ey(1X)〉X = 〈Ey〉X , (3.21)

Ey = Ey(1X) = 〈U∗yU〉Y =
∑
y′∈Y ′

M †
y,y′My,y′ , (3.22)

and the general invasive measurement (2.30),

〈
F̃X

〉
y

=
〈Ey(FX)〉X
〈Ey(1X)〉X

=

∑
y′∈Y ′ TrX(ρXM

†
y,y′FXMy,y′)

TrX(ρXEy)
. (3.23)

Similarly to the invasive classical case (2.31), the measurement of y on the

detector must be described by a quantum operation Ey in (3.19), which is a com-

pletely positive map [11, 17–25, 27, 100, 101] that performs a generalized measure-

ment on the system state corresponding to the detector outcome y. The operation

Ey acting on the identity in (3.22) produces a positive operator known as a quan-

tum effect, Ey. By construction, the set of operations {Ey} preserves the identity,∑
y Ey(1X) = 1X ; hence, the effects form a partition of the identity,

∑
y Ey = 1X ,

making them probability observables over a particular detector framework exactly

as in (2.29).

Sequences of measurements emphasize the temporal ordering of operations,

just as in the invasive classical case (2.32). Given two sets of quantum opera-

tions that define the sequential interaction of two detectors with the system and

their subsequent conditioning, {Ey} and {E′z}, the joint probability of the ordered

sequence of detector outcomes (y, z) is,

P (y)P (z|y) = P (yzy) = P (yz1Xzy) = 〈Ey(E′z(1X))〉X = 〈Ey(E ′z)〉X , (3.24)

where E ′z = E′z(1X). The proper sequential probability observable Ey(E
′
z) =∑

y′M
†
y,y′E

′
zMy,y′ is not a simple product of the individual probability observables
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Ey and E ′z.

These sequence probabilities then give us the full generalization of the ABL

rule (3.15),

〈ỹ〉z =
〈Ey(E ′z)〉X
〈E(E ′z)〉X

=
〈Ey(E ′z)〉X∑

y′′∈Y 〈Ey′′(E ′z)〉X
, (3.25)

=

∑
y′∈Y ′ TrX(ρXM

†
y,y′E

′
zMy,y′)∑

y′′∈Y
∑

y′∈Y ′ TrX(ρXM
†
y′′,y′E

′
zMy′′,y′)

,

and the most general version of the invasive quantum Bayes’ rule (3.16),

〈ỹ〉z =
〈
Ẽ ′z

〉
y

〈Ey〉X
〈E(E ′z)〉X

, (3.26)

As with (2.33) and (3.15), the postselected conditioning (3.25) depends on the

entire disturbance of the first measurement via the nonselective measurement E =∑
y′′∈Y Ey′′ in the denominator.

The noncommutativity of the detection operations Ey emphasizes the fact that

measurement is an active process : an experimenter alters the quantum state by

coupling it to a detector and then conditioning on acquired information from the

detector. Without some filtering process that completes the disturbance implied

by (3.19), there is no measurement. The nonselective measurement E also includes

the active disturbance of the measurement process, but does not condition on

a particular outcome. Furthermore, measuring a quantum state in a different

order generally disturbs it differently. The state may also in certain conditions

be probabilistically “uncollapsed” back to where it started by using the correct

conditioning sequence [13–15]. In this sense, sequential quantum conditioning is

analogous to a stochastic control process that guides the progressive disturbance

of a state along some trajectory in the state space [27].

Measurement operators.—Since the quantum operation Ey performs a measure-

ment, we will refer to its Kraus operators {My,y′} (3.20) as measurement operators.



70

However, a quantum operation generally has many equivalent double-sided prod-

uct expansions like (3.20a) in terms of measurement operators. Each such set of

measurement operators {My,y′} corresponds to a specific choice of framework for

the preparation of the detector state ρY =
∑

y′∈Y ′ P (y′) y′.

Given a specific set of measurement operators, the substitution

My,y′ → Uy,y′My,y′ with unitary Uy,y′ will produce the same effect Ey according to

(3.22) but will correspond to a different operation E′y. Hence, we conclude that

many measurement operations can produce the same probability observables on

the system space [102]. Therefore, probability observables are not sufficient to com-

pletely specify a quantum measurement : one needs to specify the full operations

as in the classically invasive case (2.31).

Quantum process tomography.—Just as classical probability observables can be

characterized via process tomography, operations can be characterized by quan-

tum process tomography. One performs quantum process tomography by sending

known states into a detector, measuring the detector, then measuring the resulting

states to see how the state was changed by the detector. Since quantum oper-

ations contain information about disturbance as well as conditioning, quantum

process tomography generally requires more characterization measurements than

pure classical process tomography.

Pure operations.—An initially pure detector state with density y′ produces a

pure operation Ey(FX) = M †
yFXMy with a single associated measurement operator

My = eiφy 〈y| U |y′〉 that is unique up to the arbitrary phase factor eiφy . Most

laboratory preparation procedures for the detector are designed to produce a pure

initial state, so pure operations will be the typical case. A pure operation has the

additional property of partially collapsing a pure state to another pure state. It

is also most directly related to the probability observable Ey = M †
yMy, since the

single measurement operator has a polar decomposition My = UyE
1/2
y in terms of

the positive root of the probability observable E
1/2
y .



71

Weak measurement.—If we wish for such a conditioning process to leave the

state approximately unchanged, we must make a weak measurement, just as in

the classical case (2.25). However, a quantum weak measurement requires a strict

condition regarding the measurement operations and not just the probability ob-

servables due to the additional disturbance in the measurement. Formally, the

measurement operations typically depend on a measurement strength parameter

ε such that,

∀y ∈ Y lim
ε→0

Ey(ε;FX) = PY (y)I(FX), (3.27)

where I is the identity operation and PY (y) is the probability for obtaining the

detector outcome y in the absence of interaction. As with the classical case, the

limit as ε→ 0 is an idealization known as the weak measurement limit and is not

strictly achievable in the laboratory.

The definition (3.27) implies that subsequent measurements will be unaffected,

∀y ∈ Y, limε→0

〈
F̃X

〉
y

= 〈FX〉, and that the probability observables are propor-

tional to the identity in the weak limit, ∀y ∈ Y, limε→0Ey(ε) = PY (y)1X , just as

in the classical case (2.25). It also follows that any set of measurement operators

{My,y′(ε)} that characterize Ey(ε) must also be proportional to the identity in the

weak limit ∀y ∈ Y, y′ ∈ Y ′, limε→0My,y′(ε) ∝ 1X .

Weak measurements are more interesting in the quantum case than in the

classical case due to the existence of incompatible frameworks. Since a weak mea-

surement of an observable does not appreciably affect the quantum state, sub-

sequent measurements on incompatible observables can be made that will probe

approximately the same state. This technique allows (noisy) information about

two incompatible frameworks to be gleaned from nearly the same quantum state in

a single experiment, which is strictly impossible using strong measurements that

collapse the state to a pure state in a particular framework after each measure-
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Laser x-Polarizer z-PolarizerCoverslip

Figure 3.1: Coverslip polarization measurement. A laserbeam passes through
a preselection x-polarizer, a glass microscope coverslip, and a postselection z-
polarizer. The transmission probabilities for each segment of the apparatus are
shown. By assigning appropriate contextual values fY (t) and fY (r) (3.46) to
the output ports of the coverslip, the polarization observable FX = fX(h)h +
fX(v)v can be measured using the equivalent expansion in terms of the appropriate
measurement context FX = fY (t)Et(1X) + fY (r)Er(1X). Averaging the same
contextual values with pre- and postselected conditional probabilities

〈
t̃
〉

z x
=

〈xEt(z)x〉X /(〈xEt(z)x〉X + 〈xEr(z)x〉X) and 〈r̃〉z x = 〈xEr(z)x〉X /(〈xEt(z)x〉X +

〈xEr(z)x〉X) produces the conditioned average (3.52)
〈
F̃X

〉
z x

= fY (t)
〈
t̃
〉

z x
+

fY (r) 〈r̃〉z x.

ment. The penalty for using weak measurements is that many more measurements

are needed than in the strong measurement case to overcome the ambiguity of the

measurement, as discussed in the classical case.

3.3.1 Example: Coverslip Polarization Detector

To cement these ideas, we consider the task of indirectly measuring polarization

in a particular framework. For specificity, we will consider the passage of a laser

beam with unknown polarization through a glass microscope coverslip, as shown

in Fig. 3.1. Fresnel reflection off the coverslip leads to a disparity between trans-

mission and reflection of the polarizations, so comparing transmitted to reflected

light allows a generalized measurement of polarization. We will use exactly this

measurement technique experimentally in Chapter 4.

The system sample space we wish to measure is the polarization with respect
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to the table (h = |h〉 〈h|) and (v = |v〉 〈v|), which could in principle be measured

ideally with a polarizing beam splitter. The detector sample space is the spatial

degree of freedom of the transmitted (t = |t〉 〈t|) and reflected (r = |r〉 〈r|) ports

of a coverslip rotated to some fixed angle with respect to the incident beam around

an axis perpendicular to the table. The initial state of the detector is the pure

state indicating that the beam enters a single incident port (b = |b〉 〈b|) of the

coverslip with certainty. The rotation U∗(ρXb) = UρXbU
∗ that couples the system

to the detector describes the interaction of the beam with the coverslip and has a

unitary rotor U corresponding to the polarization-dependent scattering matrix of

the coverslip. Assuming that the scattering preserves beams of pure polarization,

so h remains h and v remains v, the rotor decouples into a direct sum of rotors

that are specific to each polarization,

U = Uh ⊕ Uv, (3.28)

meaning that U has a block-diagonal structure when represented as a matrix.

Selecting each output port of the coverslip produces the two measurement

operators according to (3.20),

Mt = 〈t| U |b〉 =

〈t| Uh |b〉 0

0 〈t| Uv |b〉

 , (3.29a)

Mr = 〈r| U |b〉 =

〈r| Uh |b〉 0

0 〈r| Uv |b〉

 , (3.29b)

which characterize the pure measurement operations that modify observables ac-

cording to (3.20a),

Et(FX) = M †
t FXMt, (3.30a)

Er(FX) = M †
rFXMr, (3.30b)
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and their adjoints that modify the state density according to (3.20b),

E∗t (ρX) = MtρXM
†
t , (3.31a)

E∗r(ρX) = MrρXM
†
r . (3.31b)

The pure measurement operations in turn produce probability observables ac-

cording to (3.22),

Et = Et(1X) = M †
tMt =

|〈t| Uh |b〉|2 0

0 |〈t| Uv |b〉|2

 , (3.32a)

Er = Er(1X) = M †
rMr =

|〈r| Uh |b〉|2 0

0 |〈r| Uv |b〉|2

 , (3.32b)

in the same framework as h and v. These probability observables are there-

fore equivalent to classical probability observables (2.29) specified by the effec-

tive characterization probabilities P̃ (t|h) = |〈t| Uh |b〉|2, P̃ (r|h) = |〈r| Uh |b〉|2,

P̃ (t|v) = |〈t| Uv |b〉|2, and P̃ (r|v) = |〈r| Uv |b〉|2.

The measurement operators (3.29) have a polar decomposition in terms of the

roots of the probability observables and an extra unitary phase contribution,

Mt =

eiφh,t√P̃ (t|h) 0

0 eiφv,t
√
P̃ (t|v)

 , (3.33a)

Mr =

eiφh,r√P̃ (r|h) 0

0 eiφv,r
√
P̃ (r|v)

 . (3.33b)

Any nonzero relative phase, such as φh,t−φv,t, will affect the framework orientation

for subsequent measurements; however, it will not contribute to the acquisition

of information from the measurement since it does not contribute to the proba-

bility observables. Such relative phase is therefore part of the disturbance of the
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measurement process.

Specifically, the initial state of polarization PX will be conditioned by a selec-

tion of a particular port on the detector according to,

〈
F̃X

〉
t

=
〈Et(FX)〉X
〈Et(1X)〉X

=
TrX(MtρXM

†
t FX)

TrX(ρXEt)
, (3.34a)〈

F̃X

〉
r

=
〈Er(FX)〉X
〈Er(1X)〉X

=
TrX(MrρXM

†
rFX)

TrX(ρXEr)
. (3.34b)

Although the probabilities in each denominator only depend on the probability

observables, the altered states in each numerator depend on the measurement

operations and will include effects from the relative phase in the measurement

operators (3.33).

3.4 Contextual Values

Operation correspondence.—The introduction of contextual values in the quantum

case proceeds identically to the classical case of invasive measurements (2.40).

Since we must generally represent detector probabilities by operations {Ey} within

the reduced system space according to (3.22) and (3.24), we must also generally

represent detector observables by weighted operations within the reduced system

space,

〈FY 〉 =
∑
y∈Y

fY (y)P (y) =
∑
y∈Y

fY (y) 〈Ey(1X)〉X = 〈FX(1X)〉X , (3.35)

FX =
∑
y∈Y

fY (y)Ey. (3.36)

If we are concerned with only a single measurement, or are working within a

single framework as in the classical formalism, then for all practical purposes the

operation FX reduces to its associated system observable FX = FX(1X) as in the
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classical definition (2.37).

Contextual values.—We observe a corollary exactly as in the classical case

(2.38): if we can expand a system observable in terms of the probability observ-

ables generated by a particular measurement operation, then that observable can

also be expressed as an equivalent detector observable,

FX =
∑
y∈Y

fY (y)Ey =⇒ FY =
∑
y

fY (y)y, (3.37)

which is the quantum form of our main result originally introduced in [68]. As

in the classical case, we dub the required detector labels fY (y) the contextual

values (CV) of the quantum observable FX with respect to the context of a

specific detection scheme as represented in the system space by the measurement

operations {Ey}.

Unlike the classical case, the probability operators {Ey} need not be diagonal,

nor need they commute. All that is strictly necessary is for the equality (3.37)

to hold in the sum. Moreover, since many measurement operations produce the

same probability observables {Ey(1X) = Ey}, many detection schemes can use the

same CVs to reproduce an observable average.

Moments.—As with classically invasive measurements (2.41), higher statistical

moments of the observable require more care to measure. For instance, we require

the following equality in order to accurately reproduce the nth moment of an

observable indirectly using the same CV,

〈(FX)n〉X =
∑

y1,...,yn∈Y

fY (y1) · · · fY (yn) 〈Ey1 · · ·Eyn〉X . (3.38)

However, as indicated in (3.24), performing a sequence of n measurements pro-

duces the measurable probability 〈Ey1(· · · (Eyn) · · · )〉X 6= 〈Ey1 · · ·Eyn〉X . Indeed,

〈Ey1 · · ·Eyn〉X will not generally be a well-formed probability. To obtain the equal-
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ity (3.38) with a particular choice of CV, we need the additional constraint that all

the measurement operators must commute with each other. As a result, they must

be part of the same framework as the system observable and hence commute with

that observable as well. We will call any detector with commuting measurement

operators with respect to a particular observable a fully compatible detector for

that observable.

Alternatively, as with the classical case, we can change the CVs to define

new observables that correspond to powers of the original observable, such as

GX = (FX)n =
∑

y∈Y gY (y)Ey. These new observables can then be measured

indirectly using the same experimental setup without the need for measurement

sequences. The CVs gY (y) for the nth power of FX will not be a simple power of

the CVs fY (y) for FX unless the measurement is unambiguous.

Correlation functions.—If a time-evolution unitary rotation Ut is inserted be-

tween different observable measurements, then we obtain a quantum correlation

function instead,

〈
˜FX(0)GX(t)

〉
= 〈FX(Ut(GX(1X)))〉X , (3.39)

which should be compared to the classical case (2.42). Similarly, n-time correla-

tions can be defined with n− 1 time-evolutions between the observable measure-

ments
〈
F1(Ut1(F2(· · ·Utn−1(Fn(1X)) · · · )))

〉
.

Inversion.—Since the CVs depend only on the probability observables, which

commute with the measured observable for a fully compatible detector, the pro-

cedure for determining the CVs will be identical to the classical case. That is,

the contextual values of a quantum observable exactly correspond to the detector

labels for a classically ambiguous detector. We shall refer the reader back to the

classical inversion (2.46) for discussion on how to solve the relation (3.37). As a

reminder, we advocate the pseudoinverse as a principled approach for picking the
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CVs in the event of redundancy or course-graining.

Conditioned averages.—We can construct a general postselected conditioned

average from the CVs and the fully generalized ABL rule (3.25) analogously to

the classical case (2.43),

〈
F̃X

〉
z

=
∑
y

fY (y) 〈ỹ〉z =
〈FX(E ′z)〉X
〈E(E ′z)〉X

, (3.40)

=

∑
y∈Y

∑
y′∈Y ′ fY (y)Tr

(
ρXM

†
y,y′E

′
zMy,y′

)
∑

y∈Y
∑

y′∈Y ′ Tr
(
ρXM

†
y,y′E

′
zMy,y′

) .

We introduced this type of conditioned average in [68] for the typical case of pure

operations {Ey} with single associated measurement operators {My}.

If the postselection is defined in the same framework as the measurement

operation, then the nonselective measurement E in the denominator will reduce

to unity, leaving a classical conditioned average,

〈FX〉z =

∑
y∈Y fY (y) 〈EyE ′z〉X

〈E ′z〉X
=
〈FXE ′z〉X
〈E ′z〉X

, (3.41)

of the same form as (2.24). Similarly, the preselected conditioning (3.23) will also

reduce to (3.41) for such a case. This special case cannot exceed the eigenvalue

range of the observable: the observable FX will always reduce to its eigenvalues

since either the state or the postselection commute with it.

More generally, however, the combination of amplified CVs and the context-

dependent probabilities in the general postselected average (3.40) can send it

outside the eigenvalue range of the observable. We will see examples of this in

Chapters 4, 5, and 6.

Strong-conditioned average.—There are two other important special cases of

the conditioned average (3.40) worth mentioning: strong measurement and weak

measurement. The strong measurement case is distinguished by being constrained
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exclusively to the eigenvalue range of the observable. Specifically, (3.40) reduces

to the form,

〈
F̃X

〉
z

=

∑
x∈X fX(x)P (x)Dx(z)∑

x∈X P (x)Dx(z)
=

∑
x∈X fX(x) 〈x| ρ |x〉 |〈x|z〉|2∑

x∈X 〈x| ρ |x〉 |〈x|z〉|2
, (3.42)

which contains only the eigenvalues fX(x) of the observable and factored proba-

bility products. However, it cannot be expressed solely in terms of the observable

FX and a conditioned state as in the classical case (2.43) due to the disturbances

Dx(z). Only when the state or postselection commutes with the observable does

(3.42) reduce to a special case of (3.41) and become free from disturbance.

Weak values.—The weak measurement case is distinguished by being the only

case of the quantum postselected conditioned average (3.40) that can become

context independent for any state and postselection (under certain conditions,

see Section 3.5). The context-independent weak limit of the conditioned average

(3.40) is the weak value [28, 30–32, 35, 36, 68],

〈
F̃X

〉
z

w =
〈E ′zFX + FXE

′
z〉X

2 〈E ′z〉X
, (3.43)

and is expressed entirely in terms of the system expectation functional 〈·〉X , the

postselection probability observable E ′z, and the observable FX . Written in this

form it is clear that it is a symmetrized version of the context-independent com-

muting case (3.41); however, unlike (3.41) the weak value (3.43) is not constrained

to the eigenvalue range and can even diverge. For a pure initial state with trace-

density x and pure postselection z, the weak value (3.43) takes the traditional

form,

〈FX〉wz x → Re
〈z| FX |x〉
〈z|x〉

. (3.44)

We will have much more to say about weak values in Section 3.5 and in Chapter 6.
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3.4.1 Example: Coverslip Detector Revisited

Continuing the example from Sec. 3.3.1 and Fig. 3.1, observables defined in the

same framework as the probability observables may be expressed in terms of the

probability observables according to (3.37) using contextual values (CVs), exactly

as in the classical example (2.53),

FX = fX(h)h+ fX(v)v = fY (t)Et + fY (r)Er, (3.45a)fX(h)

fX(v)

 =

P̃ (t|h) P̃ (r|h)

P̃ (t|v) P̃ (r|v)

fY (t)

fY (r)

 . (3.45b)

Inverting this relation according to (2.46) produces the unique CVs,

fY (t) =
P̃ (r|v)fX(h)− P̃ (r|h)fX(v)

P̃ (t|h)P̃ (r|v)− P̃ (r|h)P̃ (t|v)
, (3.46a)

fY (r) = − P̃ (t|v)fX(h)− P̃ (t|h)fX(v)

P̃ (t|h)P̃ (r|v)− P̃ (r|h)P̃ (t|v)
. (3.46b)

The denominator is unity when the output ports of the coverslip are perfectly

correlated with the polarization. Otherwise, the denominator is less than one and

serves to amplify the CVs to compensate for the ambiguity of the detection. The

numerator contains cross-compensation factors that correct bias in the detector;

that is, the eigenvalue fX(h) for h in the contextual value fY (t) for t is weighted by

the conditional probability P̃ (r|v) corresponding to the complementary quantities

of v and r, and so forth.

The CVs define the detector observable that is actually being measured in the

laboratory,

FY = fY (t)t+ fY (r)r. (3.47)

This detector observable corresponds to a detection operation on the system space



81

according to (3.36),

FX = fY (t)Et + fY (r)Er, (3.48)

which fully describes the interaction with the detector, subsequent conditioning,

and experimental convention for defining the observable. When no subsequent

conditioning is performed on the system, this operation constructs the system

observable FX = FX(1X) = fY (t)Et + fY (r)Er, as desired.

Since the pure measurement operations all belong to the same framework and

commute with FX , the operation FX is also fully compatible with the observable

FX , meaning it can measure any moment of that observable using the same CVs

according to (3.38),

〈FnX(1X)〉X = 〈(FX)n〉X =
∑
i1...in

fY (i1) . . . fY (in) 〈Ei1 . . . Ein〉X . (3.49)

The quantity FnX(1X) indicates a sequence of n consecutive measurements made

by the same coverslip on the beam to construct the observable (FX)n for the

nth moment of FX . That is, the output from each port of the coverslip is fed

back into the coverslip to be measured again. There are 2n possible outcome

sequences (i1, . . . , in) for n traversals through the coverslip, each with probability

〈Ei1 . . . Ein〉X of occurring. These probabilities are weighted with appropriate

products of corresponding CVs and summed to correctly construct the nth moment

of FX .

Alternatively, one can change the CVs to directly measure the observable

GX = (FX)n = gY (t)Et+gY (r)Er from one traversal of the coverslip. The required
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CVs for GX ,

gY (t) =
P̃ (r|v)(fX(h))n − P̃ (r|h)(fX(v))n

P̃ (t|h)P̃ (r|v)− P̃ (r|h)P̃ (t|v)
, (3.50a)

gY (r) = − P̃ (t|v)(fX(h))n − P̃ (t|h)(fX(v))n

P̃ (t|h)P̃ (r|v)− P̃ (r|h)P̃ (t|v)
, (3.50b)

are not simple powers of the CVs (3.46) for FX unless the measurement is unam-

biguous.

In addition to moments of FX , we can obtain postselected conditioned aver-

ages of FX by conditioning on a second measurement outcome characterized by

a probability observable E ′z after the measurement by the coverslip according to

(3.40),

〈
F̃X

〉
z

=
〈FX(E ′z)〉X
〈E(E ′z)〉X

, (3.51)

where E = Et + Er is the nonselective measurement by the coverslip. The second

measurement could be a polarizer, another coverslip, or any other method for

measuring polarization a second time.

If the initial state is pure with a density ρ = x = |x〉 〈x| and the final posts-

election is also pure z = |z〉 〈z| , then (3.51) simplifies to a pre- and postselected

conditioned average,

〈
F̃X

〉
z x

=
fY (t)|〈z|Mt |x〉|2 + fY (r)|〈z|Mr |x〉|2

|〈z|Mt |x〉|2 + |〈z|Mr |x〉|2
. (3.52)

If we relate both pure states to the reference state h via unitary rotations as

defined in (3.4), x = Uα,β,γ(h) and z = Uα′,β′,γ′(h), then the probabilities take the
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form,

|〈z|Mt |x〉|2 = P̃ h(t) cos2(β/2) cos2(β′/2) + P̃ v(t) sin2(β/2) sin2(β′/2) (3.53a)

+

√
P̃ h(t)P̃ v(t)

2
sin β sin β′ cos(γ − γ′ − φh,t + φv,t),

|〈z|Mr |x〉|2 = P̃ h(r) cos2(β/2) cos2(β′/2) + P̃ v(r) sin2(β/2) sin2(β′/2) (3.53b)

+

√
P̃ h(r)P̃ v(r)

2
sin β sin β′ cos(γ − γ′ − φh,r + φv,r).

We see that each probability possesses an interference term that stems from the

relative orientations of the incompatible frameworks for the preparation, mea-

surement, and postselection. In addition, the relative phases in the measurement

operators (3.33) will affect the orientations of the frameworks and further disturb

the measurement, as mentioned. For the classical case, the frameworks coincide,

so β, β′ ∈ {0, π}; the interference term vanishes; and, the probabilities reduce to

the conditional probabilities that characterize the probability observables.

The combination of the expanded range of the CVs (3.46) and the interference

term in the probabilities (3.53) can make the postselected conditioned averages

(3.51) counter-intuitively exceed the eigenvalue range of the observable FX . Such a

violation of the eigenvalue range cannot occur from classical conditioning without

disturbance as in Sec. 2.5.2.

3.4.2 Example: Calcite Polarization Detector

We can also measure polarization using a von Neumann measurement [11] that

uses a detector with a continuous sample space detector, such as position3. For ex-

ample, passing a beam of polarized light through a calcite crystal will continuously

separate the polarizations h and v along a particular position axis. Measuring the

3In Chapter 6 we will solve such a von Neumann measurement exactly using a different
method.
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position profile of the resulting split beam along that axis allows information to

be gained about the polarization.

For such a setup, measuring the position with a linear scale corresponds to

measuring a detector observable Q =
∫
Y
y dε(y) for a continuous sample space of

distinguishable positions. The observable Q has a conjugate DQ that satisfies the

Lie bracket [Q,DQ] = i1Y . The conjugate can thus generate translations in Q with

a group action, exp(iqDQ)Q exp(−iqDQ) = Q + [iqDQ, Q] + [iqDQ, [iqDQ, Q]] +

· · · = Q+ q1Y . Hence, we can model the calcite crystal as a rotation governed by

a unitary rotor of the form

U = exp(−i(εhh− εvv)DQ), (3.54)

which will translate h polarization by some amount εh while simultaneously trans-

lating v polarization by some amount εv in the opposing direction. The parameters

εh and εv will depend on the material of the crystal and the angle of the optical

axis of the crystal to the incident beam4.

Suppose the light beam has an initially pure beam profile state described by a

density ρ = |ψ〉 〈ψ| . The probability for obtaining a particular pure position y =

|y〉 〈y| in the profile would then be dPY (y) = pY (y)dy = Tr(ρy)dy = |〈y|ψ〉|2dy.

Each complex factor 〈y|ψ〉 is the “wave function” of the transverse beam pro-

file, whose complex square is the probability density with respect to the integral

pY (y) = |〈y|ψ〉|2.

If we then pass the beam through the crystal described by the rotor (3.54) and

measure its position in a pure position state y = |y〉 〈y| , we will have enacted a

pure operation on the polarization of the beam that is characterized by a single

4For example, if h is aligned with the optic axis of the crystal then h is the ordinary ray with
εh = 0 while v is the extra-ordinary ray with εv 6= 0.
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measurement operator,

dEy(FX) = M(y)†FXM(y)dy, (3.55a)

M(y) = 〈y| U |ψ〉 = h 〈y − εh|ψ〉+ v 〈y + εv|ψ〉 , (3.55b)

with components equal to the initial wave function of the detector profile shifted

in position by an appropriate ε. The pure measurement operations define a con-

tinuous set of probability observables,

dE(y) = dEy(1X) = M(y)†M(y)dy = h dPY (y − εh) + v dPY (y + εv), (3.56)

with components equal to the initial transverse beam profile shifted in position by

an appropriate ε. Unless the shifts become degenerate with εv = −εh then these

probability observables can be used to indirectly measure any observable in the

framework of h and v.

Since the observable εhh − εvv appears as a generator for the rotation U ,

it could be tempting to assert that the detector must specifically measure this

observable. However, only the framework in which the generating observable is

defined determines which observables can be measured. The choice of CV, which

can be made in postprocessing, will calibrate the detector to measure specific

observables in that framework.

We considered a classical version of similar probability observables in Sec-

tion 2.5.4. Generalizing that derivation only slightly, we can find the preferred

contextual values (CVs) fY (y) for an arbitrary polarization observable FX =

fX(h)h+ fX(v) v,

fY (y) = fX(h)
v+(y) + v−(y)

2
+ fX(v)

v+(y)− v−(y)

2
, (3.57a)

v+(y) =
pY (y − εh) + pY (y + εv)

a+ b(εh, εv)
, (3.57b)
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v−(y) =
pY (y − εh)− pY (y + εv)

a− b(εh, εv)
, (3.57c)

a =

∫
Y

p2
Y (y) dy, (3.57d)

b(εh, εv) =

∫
Y

pY (y − εh) pY (y + εv) dy. (3.57e)

In particular, one can measure the orthogonal observables h− v and 1X using the

expansions,

h− v =

∫
Y

v−(y) dE(y), (3.58)

1X = h+ v =

∫
Y

v+(q) dE(y). (3.59)

For the specific case of an initial Gaussian beam centered at zero, we have,

p(y) = exp

(
− y2

2σ2

)
/σ
√

2π, (3.60a)

ε = (εh + εv)/2, (3.60b)

δ = (εh − εv)/2, (3.60c)

a =
1

2σ
√
π
, (3.60d)

b(ε) = a exp(−(ε/σ)2), (3.60e)

v−(y) =
√

2
exp(− (y−δ)2

2σ2 ) sinh( ε(y−δ)
σ2 )

sinh( ε2

2σ2 )
, (3.60f)

v+(y) =
√

2
exp(− (y−δ)2

2σ2 ) cosh( ε(y−δ)
σ2 )

cosh( ε2

2σ2 )
, (3.60g)

What matters for the measurement is the average translation ε away from the

midpoint (y − δ). The amplification of the CVs is controlled by the parameter

ε/σ, which serves as an indicator for the ambiguity of the measurement. When the

shift ε is large compared to the width of the Gaussian σ, then ε/σ � 1; the shifted

Gaussians for h and v are distinguishable; the CVs approach the eigenvalues of
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the measurement; and, the measurement is unambiguous. When the shift is small

compared to the width of the Gaussian, then ε/σ � 1, the Gaussians for h and

v largely overlap, the CVs diverge, and the measurement is ambiguous. Fig. 3.2

shows the CVs (3.60f) for the Gaussian initial beam profile, as well as for a Laplace

and top-hat profile for comparison.

This sort of detection protocol was used in the original paper on weak val-

ues [28] in the form of a Stern-Gerlach apparatus that measures spin analogously

to polarization using a continuous momentum displacement generated by a mag-

netic field. The initial Gaussian beam profile shifted an amount ε away from the

midpoint of the initial beam profile in a direction corresponding to the value of

the spin. Since the beam profile was symmetric about its mean, the generic CVs

fY (y) = y/ε were implicitly assigned as a linear calibration of the detector, which

targets a specific observable analogous to h − v. Motivating this implicit choice

was the fact that when ε is sufficiently small, the two overlapping Gaussians pro-

duce to a good approximation a single resulting Gaussian with a shifted mean

consistent with such a linear scaling, as shown in Fig. 3.3. That such a choice

was being made was later pointed out explicitly in [34] before we identified the

role of the CVs in [68] and derived the preferred form (3.60f). The proposed spin

measurement protocol was adapted to a polarization measurement using a calcite

crystal, as we have developed in this section, and then verified experimentally

[29, 44].

To produce the weak value from the polarization measurement, we postselect

on a second measurement to form a conditioned average. If the initial polarization

state is pure with a density ρ = x = |x〉 〈x| and the final postselection is also pure

z = |z〉 〈z| , then we have the form,

〈
F̃X

〉
z x

=

∫
Y
fY (y)|〈z|M(y) |x〉|2dy∫
Y
|〈z|M(y) |x〉|2dy

. (3.61)
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If we choose the symmetric Gaussian case (3.60) with δ = 0 and take the form of

M(y) without additional unitary disturbance,

M(y) =
1√
σ
√

2π

[
h exp

(
−(y − ε)2

4σ2

)
+ v exp

(
−(y + ε)2

4σ2

)]
, (3.62)

and relate both pure states to the reference state h via unitary rotations as defined

in (3.4), x = Uα,β,γ(h) and z = Uα′,β′,γ′(h), then the postselected probability

density p̃z x(y) takes the form,

|〈z|M(y) |x〉|2 =
exp(−y2+ε2

2σ2 )

2σ
√

2π
× (3.63)(

(1 + cos β cos β′) cosh
yε

σ2
+ (cos β + cos β′) sinh

yε

σ2

+ sin β sin β′ cos(γ − γ′)
)
,

Choosing the CVs (3.60f) to target the observable h− v, the conditioned average

(3.61) then takes the form,

〈
h̃− v

〉
z x

=
cos β + cos β′

1 + cos β cos β′ + Ξ(ε, σ)
, (3.64a)

Ξ(ε, σ) = sin β sin β′ cos(γ − γ′) exp

(
− ε2

2σ2

)
. (3.64b)

The interference term Ξ(ε, σ) in the denominator is the only part of the conditioned

average that depends on the details of the measurement context through the ex-

ponential dependence on ε/σ, which was also noted in [37, 103]. This conditioned

average can exceed the eigenvalue range of the observable due to the combination

of the amplified CVs and the disturbance linking the incompatible frameworks

in the conditional probabilities. Fig. 3.4 shows the Gaussian measurement of the

conditioned average (3.64), as well as top-hat and triangular measurements for

comparison.

The conditioned average (3.64) has two limiting cases that eliminate the ex-
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plicit context-dependence: (1) In the strong-measurement limit, ε/σ → ∞, the

interference term vanishes, leaving a conditioned average of projective measure-

ments that always stays in the eigenvalue range of the observable. (2) In the

weak-measurement limit, ε/σ → 0, the conditioned average reduces to the weak

value,

〈h− v〉wz x = Re
〈z| (h− v) |x〉
〈z|x〉

=
cos β + cos β′

1 + cos β cos β′ + sin β sin β′ cos(γ − γ′)
.

(3.65)

The weak value is distinguished by being the only case that can be written entirely

in terms of the observable, the post-selection, and the pre-selected state without

reference to the intermediate measurement. In this sense, it is the only context-

independent form of the conditioned average. The derivation in the next section

shows exactly under what conditions the weak value can be attained as such a

limit point of a conditioned average.

3.5 The Weak Value as a Conditioned Average

As we have seen for the case of the calcite detector (3.65), the weak value (3.43)

seems to arise naturally as the weak limit of post-selected conditioned averages.

Indeed, much of the existing literature on weak values (e.g. [28, 30–32, 35, 36, 66])

operates under the assumption that it is the only weak limit of a conditioned

average, or that it is a well-defined property of a pre- and postselected ensemble

prior to the ensemble being measured. However, a conditioned average does not

necessarily converge to the weak value in the weak measurement limit, as has

been noted independently by several groups [33, 34, 37, 42, 68, 104], making its

interpretation as a well-defined property worthy of more careful consideration. To

obtain correct laboratory predictions for a conditioned average, the formula (3.40)
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must be used, which generally requires the specification of the detection strategy

and the protocol for assigning contextual values to target a specific observable.

Despite the interpretational controversy, the weak value (3.43) is distinguished

by being a context independent weak limit of the conditioned average that is easy

to compute theoretically and appears quite commonly in typical laboratory situa-

tions. The formal expression of the weak value can also appear in other measure-

ment scenarios, such as in “modular values” [105], or even perturbative corrections

to energy spectra5, which makes it an independently interesting quantity to study.

We will examine it more closely in Chapter 6.

We will now demonstrate how the weak value (3.43) naturally appears from

the general conditioned average (3.40) under a broad range of measurement con-

ditions.

Preliminaries.—First we note from (3.20c) that each measurement operator

has a polar decomposition, My,y′ = Uy,y′ |M |y,y′ , in terms of a unitary operator

Uy,y′ and a positive operator |M |y,y′ . It then follows that,

M †
y,y′E

′
zMy,y′ = |M |y,y′U †y,y′E

′
zUy,y′ |M |y,y′ , (3.66)

=
{
|M |2y,y′ , Uy,y′(E

′
z)
}
/2−

[
|M |y,y′ ,

[
|M |y,y′ , Uy,y′(E

′
z)
]]
/2,

where
{
A, B

}
= AB + BA is the anticommutator,

[
A, B

]
= AB − BA is the

commutator, and Uy,y′(E
′
z) = U †y,y′E

′
zUy,y′ is a unitary rotation of the postselec-

tion.

Next we make the following assumptions regarding the dependence of the

relevant quantities on some strength parameter ε:

1. The measurement operators My,y′ are analytic functions of ε, and thus have

5If |E〉 is an eigenstate of a Hamiltonian H with energy E, and |E′〉 is an eigenstate of
the perturbed Hamiltonian Ĥ ′ = Ĥ + ∆̂ with energy E′, then 〈E′| Ĥ ′ |E〉 = E′ 〈E′|E〉 =
E 〈E′|E〉+ 〈E′| ∆̂ |E〉, so we can conclude that the perturbation in the eigenenergy corresponds
to the (purely real) weak value of the perturbation E′ = E + 〈E′| ∆̂ |E〉 / 〈E′|E〉.
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well defined Taylor expansions around ε = 0 such that they are proportional

to the identity in the weak limit, ∀y, y′, limε→0My,y′ ∝ 1X .

2. The unitary parts of the measurement operators Uy,y′ = exp(iGy,y′(ε)) are

generated by Hermitian operators of order εk, Gy,y′(ε) = εkG
(k)
y,y′+O(εk+1), for

some integer k ≥ 1. Furthermore, each Uy,y′ must commute with either the

system state or the postselection, ∀y, y′, [Uy,y′ , ρX ] = 0, or ∀y, y′, [Uy,y′ , E
′
z] =

0.

Assertion.—Given the above sufficient conditions, we have the following obser-

vation: in the weak limit ε→ 0 the context dependence of the conditioned average

(3.40) often vanishes, producing the weak value (3.43) as a limit point.

Proof.—To prove our assertion, we expand (3.40) to the minimum necessary

order of εn and then take the weak limit as ε → 0. First, we expand (3.66) to

order εn using assumptions (1), and (4),

M †
y,y′E

′
zMy,y′ = c2

y,y′Uy,y′(E
′
z) + cy,y′

{
|M |(n)

y,y′ , Uy,y′(E
′
z)
}
εn +O(εn+1). (3.67)

Generally, the remaining unitary rotation of the postselection will disturb the

weak limit. However, if
[
Uy,y′ , E

′
z

]
= 0 as in assumption (2), then Uy,y′(E

′
z) = E ′z

and the unitary disturbance disappears. If instead
[
Uy,y′ , ρX

]
= 0, then we can

apply the state to (3.67) and find,

〈
M †

y,y′E
′
zMy,y′

〉
X

= c2
y,y′ 〈Uy,y′(E

′
z)〉X + cy,y′

〈{
|M |(n)

y,y′ , Uy,y′(E
′
z)
}〉

X
εn +O(εn+1).

(3.68)

Since 〈Uy,y′(E
′
z)〉X = TrX(U†(ρX)E ′z) = 〈E ′z〉X , the first term simplifies. The

unitary rotation in the second term expands to Uy,y′(E
′
z) = E ′z + O(εk), and the

O(εk) correction can be absorbed into the overall O(εn+1) correction.
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Therefore, after summing over y′ we find up to corrections of order εn+1,

∑
y′

〈
M †

y,y′E
′
zMy,y′

〉
X

=
〈{
Ey(ε), E

′
z

}〉
X
/2, (3.69)

where the probability observable has the expansion to order εn,

Ey(ε) =
∑
y′

|M |2y,y′(ε) =
∑
y′

(c2
y,y′1X + 2cy,y′|M |(n)

y,y′ε
n +O(εn+1)). (3.70)

Inserting (3.69) into (3.40), we find,

〈FX〉z =

〈{
FX , E

′
z

}
/2
〉
X

+
∑

y fY (ε; y)O(εn+1)〈{
1X , E ′z

}
/2
〉
X

+O(εn+1)
, (3.71)

where we have simplified
∑

y fY (ε; y)Ey(ε) = FX in the numerator, and
∑

y Ey(ε) =

1X in the denominator. Hence, unless the CVs in the numerator have poles larger

than 1/εn the correction terms of order εn+1 will vanish, producing the weak value

(3.43) in the weak limit ε→ 0, as claimed. The conditions for ensuring that these

poles do not appear are explored in Appendix B for completeness.

Exceptions.—As the assertion indicates, the weak value will arise as the weak

limit of a conditioned average in many common laboratory situations, which ex-

plains its stability in the literature. However, different weak limits are still pos-

sible. For example, an ε-dependent unitary disturbance in the measurement will

effectively rotate the post-selection to a different framework for each measure-

ment outcome, creating additional terms in the weak limit. Similarly, CVs that

diverge more rapidly than 1/εn produce additional terms in the weak limit. (See,

for example, Ref. [45] or the semi-weak limit of Chapter 5.) This latter case can

happen either from a pathological choice of CVs by the experimenter in the case

of redundancy, or if the probability observables are insufficiently correlated to FX

when higher-order terms in ε are neglected.
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Figure 3.2: Preferred CVs fY (y) given in (3.57c) for a calcite position measure-
ment that targets the polarization observable FX = h − v, shown for strong
separation (ε = 1), wimpy separation (ε = 0.1), and weak separation (ε = 0.02) of
the polarizations. Top Row : Initial Gaussian beam profile. Middle Row : Initial
Laplace beam profile. Bottom Row : Initial top-hat beam profile. Note that the
top-hat CVs are the eigenvalues of ±1 under strong separation, but become am-
plified as the distributions start to overlap; moreover, the top-hat CVs cancel out
in the perfectly ambiguous overlapping region. The amplification and cancellation
behavior of the CVs is more complicated for less definite detector profiles.
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Figure 3.3: Pre- and postselected detector probability densities p̃z x(y) for the
calcite position measurement (3.56), shown for strong separation (ε = 1), wimpy
separation (ε = 0.1), and weak separation (ε = 0.02) of the polarizations. The pre-
selection is x = |x〉 〈x| with associated vector |x〉 = cos(4π/6) |h〉+ sin(4π/6) |v〉.
The postselection is z = |z〉 〈z| with associated vector |z〉 = ( |h〉+ |v〉)/

√
2. Top

Row : Initial Gaussian beam profile. Middle Row : Initial Laplace beam profile.
Bottom Row : Initial top-hat beam profile. Note that the Gaussian profile tilts to
approximate a single shifted Gaussian under weak separation, as leveraged in the
weak measurement protocol introduced in [28].
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Figure 3.4: Pre- and postselected conditioned average densities fY (y) p̃z x(y) for
a calcite position measurement targeting the observable FX = h − v with
CVs as in Fig. 3.2, shown for strong separation (ε = 1), wimpy separation
(ε = 0.1), and weak separation (ε = 0.02) of the polarizations. The condi-

tioned averages
〈
F̃X

〉
z x

=
∫
Y
fY (y) p̃z x(y) dy are the areas under the curves

and are shown inset. As in Fig. 3.3, the preselection is x = |x〉 〈x| , where
|x〉 = cos(4π/6) |h〉 + sin(4π/6) |v〉. The postselection is z = |z〉 〈z| , where
|z〉 = ( |h〉 + |v〉)/

√
2. Top Row : Initial Gaussian beam profile. Middle Row :

Initial Laplace beam profile. Bottom Row : Initial top-hat beam profile. For
sufficiently strong separation all three detector profiles will produce the strong

conditioned average
〈
F̃X

〉
z x

= −1/2. For weak separation all three profiles ap-

proximate the weak value 〈FX〉wz x = −2 −
√

3 ≈ −3.73. However, the different
detector profiles converge to the weak value at different rates with decreasing ε.
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4 Generalized Leggett-Garg

Inequalities

Thus, in the present author’s view, of the three major classes of ‘resolution’
of the quantum measurement paradox, the ‘orthodox’ one involves a major
logical fallacy and the ‘many- worlds’ interpretation is simply a meaningless
collage of words. The ‘statistical’ interpretation, if taken to its logical conclu-
sion, is internally consistent but conflicts rather violently with the ‘realistic’
intuitions which most practising physicists probably find not only philosophi-
cally congenial, but almost essential, psychologically, in their everyday work.
Thus, one is led to consider the possibility that the fundamental premise of
the argument is wrong: that is, that the linear formalism of QM does not
apply in unmodified form to macroscopic systems in the same way as it does
to their microscopic constituents.

Anthony J. Leggett, (2002) [106]

To better understand and identify the apparent division between macroscopic

and microscopic behavior, Leggett and Garg have distilled common implicit as-

sumptions about the macroscopic world into a set of explicit postulates that they

dub macrorealism (MR) [106, 107]. From these postulates, they construct in-

equalities analogous to Bell inequalities [61, 63, 108, 109] but involving multiple

correlations in time. Such Leggett-Garg inequalities (LGIs) must be satisfied by

any theory compatible with MR, but may be violated by quantum mechanics. As

such, LGI violations have received increasing interest as signatures of distinctly

quantum behavior in qubit implementations [16, 103, 110, 111], and have been re-

cently confirmed experimentally in both solid-state [112] and optical systems [57].
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Here we demonstrate a technique for systematically deriving generalized LGIs

that admit multiple parties, invasive detection, and/or ambiguous detector results

by considering a specific two-particle experimental setup with three measurements.

We proceed to experimentally violate several such two-party LGIs simultaneously

with a single data set produced from a setup using a semi-weak polarization mea-

surement on an entangled biphoton state. The contextual values (CV) technique

for observable measurement that we developed in Chapters 2 and 3 suggests a

direct comparison between the classical and quantum treatments. Finally, we

show that specific two-party LGIs are equivalent to constraints on convex sums

of conditioned averages (CA), which, as we have shown, are the generalizations of

the quantum weak value [28, 68] to an arbitrary measurement setup. The tech-

nique may be easily extended to check data from a setup with any number of

measurements and parties.

4.1 Macro-realism

An introduced by Leggett, a macro-realistic theory consists of three key postu-

lates [106, 107]:

1. If an object has several distinguishable states available to it, then at any

given time it is in only one of those states.

2. One can in principle determine which state it is in without disturbing that

state or its subsequent dynamics.

3. Its future state is determined causally by prior events.

In addition to these postulates, we acknowledge that physical detectors may be

imperfect by being (a) invasive by altering the object state during the interaction,

or (b) ambiguous by reporting results that only correlate probabilistically with the
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Figure 4.1: MR measurement schematic. An object pair is picked from an ensem-
ble ζ at time t0. At t1 object 1 of the pair interacts with an imperfect detector for
the property A1, which reports a contextual value α1. At t2 both objects interact
with unambiguous detectors for the properties B1 and B2 that report values b1

and b2. The two-party LG correlation C is constructed from the measured results.

object state due to inherent detector inefficiencies or errors. We will show that

we can derive generalized Leggett-Garg inequalities by assuming that one or the

other of these imperfections does not apply.

For convenience we consider dichotomic properties in what follows, though

the discussion can be easily extended. Unambiguous detector outcomes will be

assigned the (arbitrary) values {−1, 1} corresponding to the two possible states

of the property being measured. Ambiguous detectors will be calibrated to report

the same ensemble average as an unambiguous detector for the same property.

To do so, their outcomes must be assigned contextual values α ∈ S from an

expanded set S, with minS ≤ −1 and maxS ≥ 1, to compensate for the imperfect

state correlation of the outcomes. The contextual values may be determined by

measuring pure ensembles of either ±1, as discussed in Chapter 2.

4.2 Leggett-Garg Inequalities

We now derive a specific two-party generalized LGI for a particular experimental

setup, keeping in mind that the method may be extended to any setup. Consider a
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pair of MR objects that interacts with a sequence of detectors as shown in Fig. 4.1.

At time t0 the pair is picked from a known ensemble ζ. At time t1 object 1 of the

pair interacts with an imperfect detector for the dichotomic property A1, which

reports a contextual value α1 ∈ S1. Finally, at time t2 objects 1 and 2 interact

with unambiguous detectors for the dichotomic properties B1 and B2, respectively,

which report the values b1, b2 ∈ {−1, 1}.

For each object pair, we can keep all three results to construct the correlation

product α1b1b2, or we can ignore some results as non-selective measurements [19]

to construct the alternate quantities α1, b1, b2, α1b1, α1b2, or b1b2. Since the

latter terms involve voluntary loss of information after the measurement has been

performed, we can compute them all from the same data set. Exploiting this

freedom, we construct the correlation C = α1 + α1b1b2 − b1b2 for each measured

pair, which lies in the range, −|1− 2 minS1| ≤ C ≤ |2 maxS1 − 1|.

We repeat this procedure many times and average the results of C to obtain,

〈C〉 =
∑

α1,b1,b2
P (α1|ζ)P (b1, b2|ζ, α1) (α1 + α1b1b2 − b1b2), where P (α1|ζ) is the

probability of detecting α1 given the initial ensemble ζ, and P (b1, b2|ζ, α1) is the

probability of detecting b1 and b2 given the initial ensemble ζ and the possibly

invasive detection of α1.

Generally, we cannot separate the sums due to the α1-dependence of

P (b1, b2|ζ, α1), so the best guaranteed bounds are −|1 − 2 minS1| ≤ 〈C〉 ≤

|2 maxS1 − 1|. As a special case, if the detector for A1 is unambiguous then

minS1 = −1, maxS1 = 1, and we find the LGI,

− 3 ≤ 〈A1 + A1B1B2 − B1B2〉 ≤ 1. (4.1)

Alternatively, if we assume that the detector is ambiguous but noninvasive1

1Note that our noninvasiveness assumption is stronger than the original MR requirement 2,
which need not be satisfied by every measurement strategy.
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so that P (b1, b2|ζ, α1) = P (b1, b2|ζ) then the sums do separate and we can average

A1 first to find,

〈C〉 =
∑
b1,b2

P (b1, b2|ζ) (〈A1〉 (1 + b1b2)− b1b2) . (4.2)

Since −1 ≤ 〈A1〉 ≤ 1, each term can take only three possible values {−3,−1, 1}

and we again recover (4.1). Therefore, any violation of (4.1) will imply that at

least one of the postulates (1-3) of MR does not hold, or that the detector for A1

is both invasive and ambiguous.

We can construct many similar LGIs from the same set of data. For example,

the three detectors in Fig. 4.1 allow the construction of the 23 − 1 nontrivial

correlation terms listed earlier, which can be combined with the three coefficients

{−1, 0, 1} 2. Ignoring an overall sign, we can construct (323−1 − 1)/2 = 1093

nonzero LGI correlations bounded in a similar manner to (4.1). The subset of

(322−1−1)/2 = 13 single-object LGIs can be obtained by ignoring the B2 detector.

Furthermore, if a fourth detector for A2 were added before the detector for B2,

we could test (324−1− 1)/2 = 7174453 such LGIs. One is formally identical to the

CHSH-Bell inequality [109] (see also [114]), but tests MR and not Bell-locality.

For contrast, the original approach in [107] combines separate experiments

for each correlation between ideal detectors to form a single LGI. Our approach

uses a single experimental setup to determine all 2M − 1 correlations between M

general sequential detectors to form a large number of LGIs. Hence we obtain an

exponential improvement in experimental complexity for large M .

2Allowing other coefficients, as suggested in [113], produces even more possibilities.
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4.3 Conditioned Averages

A single-object LGI, −3 ≤ 〈A1 + A1B1 − B1〉 ≤ 1, was considered in [16, 103] and

shown to have a one-to-one correspondence with an upper bound to the average

of A1 conditioned on the positive value of B1: 〈A〉1 ≤ 1. Three other LGIs

similarly correspond to the bounds 〈A〉1 ≥ −1, and −1 ≤ 〈A〉−1 ≤ 1, as checked

experimentally in [57].

We now extend these results to the two-object case using (4.1). First we

define a marginal probability of measuring b1 and b2 given any result of A1 as

P (b1, b2|ζ,A1) =
∑

α1
P (α1|ζ)P (b1, b2|ζ, α1). Then we define a conditional prob-

ability of measuring α1 given the measurement of b1 and b2 as, P (α1|ζ, b1, b2) =

P (α1|ζ)P (b1, b2|ζ, α1)/P (b1, b2|ζ,A1). Therefore, the average of A1 conditioned on

the measurements of b1 and b2 is 〈A1〉b1,b2
=
∑

α1
P (α1|ζ, b1, b2)α1.

Using this definition, we rewrite the upper bound of (4.1) as,

∑
b1,b2

P (b1, b2|ζ,A1)
(

〈A1〉b1,b2
(1 + b1b2)− b1b2

)
≤ 1, (4.3)

and insert the possible values for b1 and b2 to find the CA constraint,

〈A1〉1,1 p+ + 〈A1〉−1,−1 p− ≤ 1, (4.4)

where p± = P (±1,±1)/(P (1, 1) + P (−1,−1)), and P (i, j) = P (i, j|ζ,A1). The

degeneracy of the product value b1b2 results in an upper bound for a convex sum

of CAs, in contrast to the single-object result in [16, 103]. A sufficient condition

for violating (4.4) is for both CAs to exceed 1 simultaneously. Conversely, if all

CAs were bounded by 1, then it would be impossible to violate (4.4) or (4.1).
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Figure 4.2: (color online) Experimental setup. A 488 nm laser produces degenerate
down-converted photon pairs. The polarization of the photon in the lower arm
is rotated by 45◦ with a half-wave plate, then undergoes semi-weak polarization
measurement in the {h, v} basis using Fresnel reflection (A1) that encodes the
information in the resulting spatial modes, and is finally projected into the {θ, θ⊥}
basis with polarizers set at angle θ (B1). The polarization of the photon in the
upper arm is projected into the {h, v} basis with another polarizer (B2). The
half and quarter waveplates prior to the polarizers are used for tomography of the
input state; during data collection they are removed from the lower arm and used
to switch between h and v polarization in the upper arm.

4.4 Quantum Formulation

Projective quantum measurements produce averages of eigenvalues analogous to

the results of an unambiguous detector, but non-projective quantum measure-

ments produce averages of contextual values as shown in Chapter 3 which need

not lie in the eigenvalue range and are therefore analogous to the results of an

ambiguous detector. By measuring A1 weakly we can find quantum mechanical

violations of (4.1) and (4.4).

Specifically, if we start with a 2-object density operator ρ̂ and measure A1

generally such that Â1 =
∑

a1
a1Πa1 =

∑
α1
α1Êα1 (where {a1} are the eigenvalues

corresponding to the projections {Πa1} and {α1} are the CV corresponding to

the POVM {Êα1 = M̂ †
α1
M̂α1}), and then measure B1B2 projectively such that

B̂1 ⊗ B̂2 =
∑

b1,b2
b1b2Πb1 ⊗ Πb2 , we will find that the average correlation 〈C〉 =
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〈A1 + A1B1B2 − B1B2〉 has the form,

〈C〉 =
∑

α1,b1,b2

P (α1; b1, b2|ρ̂) (α1 + α1b1b2 − b1b2) , (4.5)

where P (α1; b1, b2|ρ̂) = Tr
((
M̂ †

α1
Πb1M̂α1 ⊗ Πb2

)
ρ̂
)

is the probability of measur-

ing outcome α1 of the general measurement of A, followed by a joint projection

of b1b2. The appearance of the CV instead of the eigenvalues of Â in (4.5) com-

bined with the non-separable probability P (α1; b1, b2|ρ̂) allows violations of the

LGI (4.1).

The left side of (4.4) follows from (4.5), with the marginalized probabil-

ity P (b1, b2|ρ̂,A1) =
∑

α1
P (α1; b1, b2|ρ̂) and with the quantum CA 〈A1〉b1,b2

=∑
α1
α1P (α1; b1, b2|ρ̂)/P (b1, b2|ρ̂,A1) defined in (3.40), which converges to a weak

value [28] (3.43) in the limit of minimal measurement disturbance, as shown in

Section 3.5.

4.5 Experimental Setup

To implement Fig. 4.1 we use the polarization of an entangled biphoton with the

setup shown in Fig. 4.2. A glass microscope coverslip measures a Stokes observable

A1 semi-weakly as described below (and in Section 3.3.1), and polarizers measure

Stokes observables B1 and B2 projectively. We produce degenerate non-colinear

type-II down-conversion by pumping a 2 mm walkoff-compensated BBO crystal

[115] with a narrowband 488 nm laser. The down-converted light passes through

automated polarization analyzers and 3 nm bandpass filters at 976 nm in each arm

before being coupled into multimode fibers connected to single photon avalanche

photodiodes (SPAD). We detect coincidences using a 3 ns window. We perform

state tomography with maximum likelihood estimation [116], which gives the state

shown in Fig. 4.3 with concurrence C = 0.794, and purity Tr (ρ̂2) = 0.815, and
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Figure 4.3: (color online) Real (left) and imaginary (right) parts of the recon-
structed density matrix in the {h, v} basis. Yellow and red represent positive and
negative values, respectively.

which has a fidelity of 87% with the pure state vector |ψ〉 = ( |hv〉 − i |vh〉)/
√

2.

After the state tomography, we remove the half- and quarter-wave plates from

the lower arm and insert either a mirror or a coverslip using a computer-controlled

translation stage. The reflected light passes though a polarization analyzer and

couples into a third fiber and SPAD. We align the coverslip and the mirror to be

parallel with an incidence angle of 40◦ relative to the incoming beam. Finally, we

optimize the fiber incoupling and balance the collection efficiencies with attenua-

tors so that the coincidences between the upper arm and either of the lower arms

differ by only a few percent when the mirror is taken in and out of the beam path.

The coverslip acts as a polarization-dependent beamsplitter measuring A1 =

σ̂z. Averaging over the 3 nm bandwidth and the thickness variation (∼ 150 ±

0.6µm) produces an average Fresnel reflection similar to that of a single interface,

with horizontal (h) polarization relative to the table exhibiting zero reflection near

Brewster’s angle and vertical (v) polarization exhibiting increasing reflection with

incident angle.

For a pure state of polarization |ψ〉 = α |h〉 + β |v〉 with |α|2 + |β|2 = 1, the

resulting state after passing through the coverslip is |ψ′〉 = (γα |h〉+ η̄β |v〉) |r〉−

(γ̄α |h〉 + ηβ |v〉) |t〉, where |j〉, j ∈ {t, r}, specify the transmitted and reflected

spatial modes of the coverslip, and the reflection and transmission probabilities
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Figure 4.4: (color online) In all data plots, solid lines indicate theory and points

indicate experimental data. a)
〈
σ̂

(1)
z

〉
(green, flat),

〈
σ̂

(1)
z

〉
θ

(red, decreasing),

and
〈
σ̂

(1)
z

〉
θ⊥

(blue, increasing). b)
〈
σ̂

(1)
z

〉
θ,h

(red, bottom right), and
〈
σ̂

(1)
z

〉
θ⊥,v

(blue, bottom left), violating negative bounds, unlike
〈
σ̂

(1)
z

〉
θ⊥,h

(orange, increas-

ing), and
〈
σ̂

(1)
z

〉
θ,v

(green, decreasing).

for h- and v-polarized light are Rh = γ2, Rv = η̄2, Th = γ̄2, and Tv = η2, such

that Ri + Ti = 1. Written this way, the coverslip reflection can be viewed as a

generalization of the weak measurement in [48] and discussed in [68].

From |ψ′〉, we find the measurement operators for the back-action of the

coverslip outcomes to be M̂r = γΠh + η̄Πv and M̂t = γ̄Πh + ηΠv, where Πi,

i ∈ {h, v}, are polarization projectors. The corresponding POVM elements are

Êr = RhΠh +RvΠv and Êt = ThΠh + TvΠv, with which we can expand the polar-

ization Stokes operator as σ̂z = Πh−Πv = αrÊr +αtÊt, as discussed before (4.5),

where αr = (Th + Tv)/(Rh −Rv) and αt = −(Rh +Rv)/(Rh −Rv) are the CV.

We determine the values of Rh and Rv with calibration polarizers before the

coverslip, yielding Rh = 0.0390 ± 0.0007 and Rv = 0.175 ± 0.001. The reflected

arm is largely projected to v, while the transmitted arm is only weakly perturbed,

making the total coverslip effect a semi-weak measurement. The CV, αr = −13.1±

0.1 and αt = 1.57 ± 0.01, are correspondingly amplified from the eigenvalues of

σ̂z.
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Figure 4.5: (color online) LGI correlation
〈
−σ(1)

z − σ(1)
z σ

(1)
θ σ

(2)
z − σ(1)

θ σ
(2)
z

〉
(red,

squares) and the corresponding convex sum of the CAs
〈
−σ̂(1)

z

〉
θ,h

and〈
−σ̂(1)

z

〉
θ⊥,v

(blue, circles), both violating their upper bounds of 1 in the same

domain of θ. Compare to Fig. 4.4 (b) and note that the LGI violation includes
the region where the two CAs both exceed their bounds.

4.6 Results

To complete the state preparation, we place a half-wave plate before the coverslip

in the lower arm and rotate the polarization by 45◦ to produce a state similar to

|ψ′′〉 = ( |ha〉 + i |vd〉)/
√

2. We then measure (4.1) by choosing the observables

A1, B1, and B2 to be the Stokes observables σ̂
(1)
z , σ̂

(1)
θ and σ̂

(2)
z , respectively, where

σ̂θ is the σ̂z operator rotated to the {θ, θ⊥} basis (e.g. σ̂0◦ = σ̂z and σ̂45◦ = σ̂x).

By changing the single parameter, θ, we can explore a range of observables.

Fig. 4.4 shows the various averages of σ̂
(1)
z . Averaging all results for orthogonal

settings on σ̂
(1)
θ and σ̂

(2)
z gives the expectation value

〈
σ̂

(1)
z

〉
, which is properly

constant and near zero for all θ since the reduced density operator is almost fully

mixed. Averaging only the results for the orthogonal settings of σ̂
(2)
z gives the

single CAs
〈
σ̂

(1)
z

〉
θ

and
〈
σ̂

(1)
z

〉
θ⊥

, which are also well-behaved. Finally, averaging

only the results for specific settings gives the double CAs
〈
σ̂

(1)
z

〉
θ,v

,
〈
σ̂

(1)
z

〉
θ⊥,h

,
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〈
σ̂

(1)
z

〉
θ,v

, and
〈
σ̂

(1)
z

〉
θ⊥,v

, which can exceed the eigenvalue range for some range

of θ due to the non-local correlations in the entangled biphoton state.

Using the same set of data, Fig. 4.5 shows the upper bound of the LGI −3 ≤〈
−σ(1)

z − σ(1)
z σ

(1)
θ σ

(2)
z − σ(1)

θ σ
(2)
z

〉
≤ 1 being violated in the same range of θ that

the appropriate convex sum of
〈
−σ̂(1)

z

〉
θ,h

and
〈
−σ̂(1)

z

〉
θ⊥,v

violates its upper

bound according to (4.4).

We can violate several more LGIs using the same set of data as well. Fig. 4.6

shows two such correlations,
〈
σ

(1)
z σ

(2)
z + σ

(2)
z σ

(1)
θ − σ

(1)
z σ

(1)
θ

〉
, and〈

−σ(1)
z σ

(2)
z + σ

(2)
z σ

(1)
θ + σ

(1)
z σ

(1)
θ

〉
that between them violate an upper bound over

nearly the whole range of θ, for illustration.

All solid curves in Figures 4.4, 4.5, and 4.6 are quantum predictions analogous

to (4.5) using the measurement operators, CV, and the reconstructed initial state.

They also include compensation for a few percent deviation in the thickness of

the half-wave plate in the upper arm. The points indicate experimental data

and include Poissonian error bars. The small discrepancies between theory and

data can be explained by sensitivity to the state reconstruction and additional

equipment imperfections. The violations indicate either that MR is inconsistent

with experiment or that the semi-weak measurement device is both invasive and

ambiguous in the MR sense.
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Figure 4.6: (color online) LGI correlations
〈
σ

(1)
z σ

(2)
z + σ

(2)
z σ

(1)
θ − σ

(1)
z σ

(1)
θ

〉
(red,

circles), and
〈
−σ(1)

z σ
(2)
z + σ

(2)
z σ

(1)
θ + σ

(1)
z σ

(1)
θ

〉
(blue, squares) violating their upper

bounds of 1 for nearly the entire θ domain.
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5 Electronic Mach-Zehnder

Interferometry

. . . present quantum theory not only does not use—it does not even dare to
mention—the notion of a “real physical situation.” Defenders of the theory
say that this notion is philosophically naive, a throwback to outmoded ways
of thinking, and that recognition of this constitutes deep new wisdom about
the nature of human knowledge. I say that it constitutes a violent irrational-
ity, that somewhere in this theory the distinction between reality and our
knowledge of reality has become lost, and the result has more the character
of medieval necromancy than of science.

Edwin T. Jaynes, (1980) [117]

The construction of electronic Mach-Zehnder interferometers (MZIs) in the

solid state is a recent innovation in the fabrication and control of coherent meso-

scopic systems. The first experiment of this kind, published by the Heiblum group

[118], used the edge states [119] of an integer quantum Hall Corbino geometry as

the electronic analog of light beams and quantum point contacts (QPCs) [120–122]

as the electronic analogs of optical beam splitters to construct an interferometer

with a visibility of 62%. Other interferometer designs have since been similarly

implemented as electronic interferometers in the integer quantum Hall regime

[123–126].

The electronic MZI differs from its optical counterpart in several respects.

The arms of the MZI accumulate relative phase differences not only due to ki-

netic propagation of electrons along the arms, but also because the electrons
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Figure 5.1: Schematic of coupled electronic MZIs. An ohmic source in a quantum
Hall system at filling factor ν = 2 injects chiral excitation pairs biased at energy
eV relative to the ohmic reference drains D1, D2, S1, and S2 into independent edge
channels. The bias is kept low enough to allow only one excitation per channel
on average. The outer (red) channel is transmitted entirely through the QPC
Qd

1 and partially transmitted through Qs
1 and Qs

2, forming the system MZI. The
inner (blue) channel is reflected entirely from Qs

1 and Qs
2 and partially transmitted

through Qd
1 and Qd

2, forming a separate detector MZI. The Coulomb interaction
between the copropagating arms Ld and U s induces an average relative phase shift
γ between each excitation pair that couples the interferometers.

are charged particles and can thus acquire a geometric Aharanov-Bohm phase

[127, 128] when the arms enclose a magnetic flux. This charge can also lead to

strong electron-electron interactions, giving rise to a variety of effects that have

no counterpart in an optical MZI. For example, the interactions can produce dif-

ferences in the counting statistics [129, 130], can induce temperature-dependent

decoherence [131–136], can be used to detect external charges [137, 138], and can

even lead to lobe structure in the visibility at high voltage bias [139–142]. Such

lobe structure was unexpected and has generated numerous theoretical explana-

tions [143–150], some hypothesizing Luttinger liquid physics as the cause.

Here we take a more modest theoretical approach for describing electronic

MZIs in a quantum Hall system that focuses on the low bias regime within a

single-particle edge-state model. We consider a configuration of two such single-

particle electronic MZIs coupled together by the Coulomb interaction, as shown
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in Figure 5.1. This geometry has similarities to Hardy’s paradox [52, 151–153]

and has been considered previously at various levels of detail by several authors

[154–157] to explore such phenomena as quantum erasure [49, 158–162] and Bell

inequality violations. In our treatment, we include interactions between the MZIs

via a minimal phenomenological model that adds a relative interaction-induced

phase shift between a pair of electrons that occupy adjacent edge states simul-

taneously. The relative phase shift has the effect of entangling [163–165] the

states, mixing the path information of the two MZIs. This kind of interaction has

been experimentally shown to be capable of producing a π-phase shift on a sin-

gle electron—perhaps the most dramatic difference from the optical analog [133].

Thus, all elements of our theoretical analysis are based on currently available

technology.

Our work considers the task of detecting which-path information in one MZI by

using the second MZI as the detector. Since the system and the detector are iden-

tical devices, this arrangement has several appealing features. First, the symmetry

of the geometry indicates that there should be a duality between “which-path” in-

formation in one MZI versus “which-fringe” information in the other. We will show

that this is indeed the case, which relates this work to earlier “controlled dephas-

ing” experiments [166–169]. We apply the contextual values formalism [68, 69]

for generalized measurements [20, 22, 27] to show how even with inefficient detec-

tion [170, 171] and low visibility, the which-path information may be extracted

from the detector currents systematically. Next, the fact that both the system

and the detector have their own inputs, outputs and coherence allows the effects

of measurement to be explored in detail. In particular, the correlations between

them can be experimentally measured and analyzed, taking various forms such

as joint counting statistics, or even conditioned measurements (see Sukhorukov

et al. [172] for an example with incoherent electrons). The ability to condition

(or post-select) measurements performed on a system with quantum coherence
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also allows the possibility of measuring weak values [28, 32, 44, 48, 68]. Weak

values, in addition to being of interest in their own right, have been shown to be

useful as an amplification technique for measuring small variations of a system

parameter [50, 51, 53, 54, 173], as well as for tests of bona fide quantum behavior

[66, 69, 103, 107, 152].

5.1 Coupled MZIs

We consider a pair of electronic MZIs embedded in a two-dimensional electron

gas in the integer quantum Hall regime at filling factor ν = 2 as illustrated in

Figure 5.1. An ohmic source with a small DC-bias eV above the Fermi energy

EF injects chiral electron-like edge excitations of charge e into the sample that

propagate uni-directionally along two independent edge channels [119]. Each edge

channel forms an interferometer from two appropriately tuned quantum point

contacts (QPCs) that coherently split and then recombine the possible paths. The

relative phase between the arms of each interferometer is determined not only by

a local dynamical phase accumulated during kinetic propagation along each arm,

but also by a global geometric phase [128] (in the form of the Aharonov-Bohm

(AB) effect) [127] arising from the closed paths. After the paths interfere, the

charges are collected at ohmic reference drains held at the Fermi energy, producing

fluctuating output currents that can be temporally averaged.

The two interferometers accrue an additional relative phase shift due to the

Coulomb interaction where the charges copropagate. Intuitively, the mutual re-

pulsion affects the dynamical phases by effectively warping the propagation paths,

which also affects the geometrical phases by changing the areas enclosed by the

paths. A more careful microscopic analysis of the joint interaction phase starting

from the screened Coulomb interaction is provided in Appendix C. Such additional

relative phase has the effect of entangling the joint state of the two interferom-
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eters, mixing the which-path information. Due to the entanglement, extracting

information from the drains of one interferometer allows one to infer correlated

which-path information about the other interferometer. That is, one interferome-

ter can be used as a detector to indirectly measure [20, 22, 27, 68] the which-path

information of the other. As we shall see, the characteristics of the measurement

will depend on the tuning of the detector interferometer as well as on the coupling

phase.

We model the coupled MZI system using the elastic scattering approach of

Landauer and Büttiker [120–122] for coherent charge transport. As the transport

is largely ballistic in the integer quantum Hall regime, the formalism directly

relates the average currents Il collected at each ohmic lead l ∈ {D1, D2, S1, S2} to

the transmission probabilities Pl(E) ∈ [0, 1] for plane waves of fixed energy E to

traverse the sample successfully. Treating the ohmic leads as thermal reservoirs,

the average currents from spinless single-channel transport are,

Il = e

∫ eV

0

dE

h
(f(E + eV )− f(E))Pl(E) (5.1a)

≈ e2V

h
Pl(EF ). (5.1b)

Here, f(E) = (exp ((E − EF )/kBT ) + 1)−1 is the equilibrium Fermi distribution

relative to the Fermi energy EF at a temperature T ; h is Planck’s constant; and,

kB is Boltzmann’s constant.

The approximate equality (5.1b) holds in the low-bias regime when EF �

eV � kBT and the transmission probabilities Pl are constant with respect to the

small variations in energy. We assume that the source operates in such a regime.

Due to the small spectral width of the source, the fermionic excitations will then

be well approximated as plane waves at a fixed energy on the scale of the sample;

hence, on average only one excitation per channel will occupy the sample and

intrachannel interactions can be ignored. In particular, we avoid the anomalous
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lobe structure in the interference that appears at higher bias [139–142].

We also assume for simplicity of discussion that the source only injects spinless

excitation pairs with one excitation per channel so that the coupling interaction

between the channels is fixed; the results will be averaged over a more realistic

source distribution in Section 5.2.7. With these approximations, the initial joint

scattering state for an excitation pair can be written in second-quantized notation

as,

|Ψ〉 = âd†âs† |0〉 , (5.2)

where |0〉 is the filled Fermi sea of the edge channels and âd† and âs† are creation

operators for plane waves of a fixed energy injected into the inner and outer chan-

nels, respectively. Operators corresponding to different edge channels commute

due to the independence of the channels.

The inner channel will form a Mach-Zehnder interferometer as shown in Fig-

ure 5.1, which we refer to as the upper MZI, or the detector MZI. Similarly, the

outer channel will form an identical interferometer, which we refer to as the lower

MZI, or the system MZI. We will use the lowercase superscripts d and s through-

out to distinguish quantities specific to the detector and the system, respectively,

and to avoid confusion with the detector and system drains that we denote with

capital letters D1, D2, S1 and S2.

The QPCs Qd
1, Qd

2, Qs
1, and Qs

2 shown in Figure 5.1 each elastically scatter the

plane waves, affecting only the complex amplitudes of the joint scattering state.

Hence, for m ∈ {d, s}, i ∈ {1, 2} we can represent the effect of each QPC as a

unitary scattering matrix,

Ûm
i =

eiχmi tmi eiξ
m
i rmi

eiχ
m
i rmi eiξ

m
i tmi

 , (5.3)

where tmi =
√
Tmi and rmi = i

√
Rm
i are given in terms of the transmission and



115

Figure 5.2: Complementary QPC balance parameters (5.4) for m ∈ {d, s} and
i ∈ {1, 2} as parametrized by the balance angle θmi . Left: transmission probability
Tmi (solid, blue) and reflection probability Rm

i (dashed, red). Right: particle-like
parameter δmi (solid, blue) and wave-like parameter εmi (dashed, red).

reflection probabilities Tmi ∈ [0, 1] and Rm
i = 1− Tmi though Qm

i . The additional

scattering phases χmi and ξmi may arise from QPC asymmetry.

The QPCs are kept tunable subject to the constraints that the outer channel

is fully transmitted through Qd
1 and Qd

2 and the inner channel is fully reflected

from Qs
1 and Qs

2 to create the two separate interfering paths. There is an addi-

tional QPC near drain S1 not shown in Figure 5.1 that is kept fixed to allow full

transmission of the outer channel and full reflection of the inner channel in order

to divert the outer channel for collection at the drain S1.

For later convenience we also introduce the complementary QPC balance pa-

rameters,

δmi = Tmi −Rm
i ∈ [−1, 1], (5.4a)

εmi = 2
√
Tmi Rm

i ∈ [0, 1], (5.4b)

for m ∈ {d, s} and i ∈ {1, 2} that satisfy (εmi )2+(δmi )2 = 1. All such QPC parame-

ters can be related by a QPC balance angle θmi ∈ [0, π/2] such that, Tmi = cos2 θmi ,

Rm
i = sin2 θmi , δmi = cos 2θmi , and εmi = | sin 2θmi | as illustrated in Figure 5.2. We

shall see that the parameters δmi control the particle-like path-bias of the excita-
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tion after a QPC, while the parameters εmi control the complementary wave-like

interference visibility.

The joint state (5.2) can be scattered through Qd
1 and Qs

1 using (5.3) into the

basis of the MZI paths, yielding the replacements,

âd† = eiχ
d
1 td1 â

†
Ld

+ eiξ
d
1 rd1 â

†
Ud
, (5.5a)

âs† = eiχ
s
1 ts1 â

†
Ls + eiξ

s
1 rs1 â

†
Us . (5.5b)

During propagation to the second pair of QPCs, each path p ∈ {Ld, Ud, Ls, U s}

accumulates an additional dynamical phase φp that depends on the excitation

energy and the path-length. When the paths recombine, the difference between

the dynamical phases contributes to the interference. Closing the paths for MZI

m ∈ {s, d} also contributes a relative geometric Aharonov-Bohm (AB) phase φmAB

that depends on the magnetic flux enclosed by the path.

We can compactly account for the various phase effects contributing to the

interference by defining tuning phases for each MZI,

φd = φdAB + φLd − φUd + χd1 − ξd1 , (5.6a)

φs = φsAB + φLs − φUs + χs1 − ξs1 . (5.6b)

Finally, the joint scattering amplitude corresponding to co-occupation of Ld

and U s acquires a effective Coulomb interaction phase γ that couples the two

interferometers. (See Appendix C for discussion about how the Coulomb effect can

produce such a phase shift.) This interaction phase compactly encodes opposing

shifts in the combined dynamical and geometric phases of each MZI due to the

Coulomb repulsion of the charge pair. For simplicity, we assume for now that the

relative phase is constant; we will allow it to fluctuate for consecutive pairs in

Section 5.2.7. We also note that any additional Coulomb phase acquired during
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copropagation after QPC Qd
1 and before QPC Qs

1 will only contribute to the tuning

phase φd and can therefore be ignored.

After adding the phenomenological phases, the scattered joint state just before

the second pair of QPCs is,

|Ψ′〉 =
(
td1 t

s
1 e

i(φd+φs)â†
Ld
â†Ls + rd1 r

s
1 â
†
Ud
â†Us (5.7)

+ rd1 t
s
1 e

iφs â†
Ud
â†Ls + td1 r

s
1 e

i(φd+γ)â†
Ld
â†Us
)
|0〉 ,

up to a global phase of exp(i(φUd + φUs + ξd1 + ξs1)) not written.

The interaction phase γ has the effect of entangling the two interferometers,

which we can show by computing the concurrence [163],

C
[
|Ψ′〉

]
= εd1 ε

s
1

∣∣∣sin γ
2

∣∣∣ ∈ [0, 1]. (5.8)

We see that the entanglement reaches a maximum when the phase γ → π and

vanishes as γ → 0. Furthermore, the entanglement directly depends on the QPCs

Qd
1 and Qs

1 preparing interfering wave-like excitations in each MZI, which is mea-

sured by εd1 ε
s
1 ; maximum entanglement can only occur for balanced QPCs with

T d1 = T s1 = 1/2, or εd1 ε
s
1 = 1.

At this point, we conceptually break the symmetry between the two interfer-

ometers to treat one as a detector for information about the other. We will treat

the upper MZI as the detector and the lower MZI as the system being measured,

though obviously we could exchange those roles by the symmetry of the geometry.

To do this we finish scattering the detector MZI through Qd
2 into the basis of the

ohmic detector drains {D1, D2} using (5.3),

â†Ld
â†
Ud

 = Ûd
2

â†D1

â†D2

 (5.9)
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yielding,

|Ψ′′〉 =
(
â†D1

[
CD1,Lse

iφsts1 â
†
Ls + CD1,Usr

s
1 â
†
Us

]
(5.10)

+ â†D2
[CD2,Lse

iφsts1 â
†
Ls + CD2,Usr

s
1 â
†
Us ]
)
|0〉 ,

up to the same global phase as in (5.7). For later convenience, we have defined

the detector scattering amplitudes,

CD1,Ls = eiχ
d
2

(
td1 t

d
2 e

iφd + rd1 r
d
2

)
, (5.11a)

CD1,Us = eiχ
d
2

(
td1 t

d
2 e

i(φd+γ) + rd1 r
d
2

)
, (5.11b)

CD2,Ls = eiξ
d
2

(
td1 r

d
2 e

iφd + rd1 t
d
2

)
, (5.11c)

CD2,Us = eiξ
d
2

(
td1 r

d
2 e

i(φd+γ) + rd1 t
d
2

)
. (5.11d)

5.2 Measurement Interpretation

The joint scattering model is useful for computing probabilities and average cur-

rents, but it does not provide direct insight into the measurement being performed

by one interferometer on the other. To make the connection to measurement more

apparent, we will use the contextual values formalism [68, 69] that links the detec-

tor drain probabilities directly to the “which-path” operator for the system. We

will see that we can understand the various subtleties of the measurement quite

transparently using this technique.

5.2.1 POVM

To facilitate the interpretation of the distinguishable detector drains as the out-

comes of a measurement being performed on the system, we define the single
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particle state kets,

|D1〉 = â†D1
|0〉 , |D2〉 = â†D2

|0〉 , (5.12a)

|Ls〉 = â†Ls |0〉 , |U s〉 = â†Us |0〉 , (5.12b)

define the reduced system state in absence of interaction,

|ψs〉 = eiφ
s

ts1 |Ls〉+ rs1 |U s〉 , (5.13)

and write (5.10) in the form,

|Ψ′′〉 = |D1〉 ⊗ M̂D1 |ψs〉+ |D2〉 ⊗ M̂D2 |ψs〉 . (5.14)

The interaction with the detector in (5.14) is entirely represented by oper-

ators acting on the reduced system state (5.13) that contain all the scattering

information of the detector,

M̂D1 = CD1,Ls |Ls〉 〈Ls| + CD1,Us |U s〉 〈U s| , (5.15a)

M̂D2 = CD2,Ls |Ls〉 〈Ls| + CD2,Us |U s〉 〈U s| . (5.15b)

The operator M̂D1 encodes the interaction followed by the absorption of the detec-

tor excitation at the drain D1. Similarly, the operator M̂D2 encodes the interaction

followed by absorption at D2. We refer to {M̂D1 , M̂D2} as measurement operators

[20, 22, 27].

As the coupling phase γ → 0 the measurement operators (5.15) become nearly

proportional to the identity. We call γ → 0 the weak coupling limit since the

reduced system state is only weakly perturbed for small γ. Conversely the limit

γ → π is called the strong coupling limit since the measurement operators are

maximally different from the identity and maximally perturb the reduced system
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state.

The measurement operators also form a Positive Operator-Valued Measure

(POVM) on the system,

ÊD1 = M̂ †
D1
M̂D1 , ÊD2 = M̂ †

D2
M̂D2 , (5.16)

such that ÊD1 + ÊD2 = 1̂. The POVM elements {ÊD1 , ÊD2} act as probability

operators for the measurement outcomes.

Hence, the probability of absorbing the detector excitation at a drain D ∈

{D1, D2} can be expressed either as an expectation of the projection operator of

the detector drain under the joint state (5.10) or, equivalently, as an expectation

of the probability operator (5.16) under the unperturbed system state (5.13),

PD = | 〈D|Ψ′′〉 |2 = 〈ψs| ÊD |ψs〉 = |CD,Lstd2 |2 + |CD,Usrd2 |2. (5.17)

By working with the reduced state (5.13), the measurement operators (5.15),

and the probability operators (5.16), we treat the detector as an abstract entity

whose sole purpose is to measure the system. Such abstraction allows us to more

clearly examine the measurement being made upon the system.

5.2.2 Contextual Values

In order to relate the measurement on the system to observable information that

we can interpret, we will use contextual values [68, 69] to formally construct system

observables from the probability operators (5.16). This formalism acknowledges

that the only quantities to which we have experimental access are the detector

drain probabilities, so all observations we wish to make about the system must be

contained somehow in those probabilities. Generally, the correspondence between

the detector drains and a particular system observable will be imperfect, but
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we can compensate for such ambiguity of the detection by weighting the drain

probabilities with appropriate values for the particular measurement setup.

Generally, we cannot construct information about just any system observable

from a particular measurement. To find which observables we can measure, it is

useful to decompose the probability operators (5.16) into an orthonormal basis

for the observable space. In our case, the system state space is two-dimensional,

so any Hermitian operator can be spanned by the four basis operators,

σ̂s0 = 1̂ = |Ls〉 〈Ls| + |U s〉 〈U s| , (5.18a)

σ̂s1 = σ̂sx = |Ls〉 〈U s| + |U s〉 〈Ls| , (5.18b)

σ̂s2 = σ̂sy = −i ( |Ls〉 〈U s| − |U s〉 〈Ls|) , (5.18c)

σ̂s3 = σ̂sz = |Ls〉 〈Ls| − |U s〉 〈U s| , (5.18d)

which are equivalent to the identity operator and the Pauli spin operators. To find

the real components of an observable in this basis we introduce the normalized

Hilbert-Schmidt inner product between operators,

〈
Â, B̂

〉
=

Tr
(
Â†B̂

)
Tr
(
1̂
) , (5.19)

under which the operator basis is orthonormal,

〈
σ̂sµ, σ̂

s
ν

〉
= δµν . (5.20)

Here µ, ν ∈ 0, 1, 2, 3 and δµν is the Kronecker delta that is 1 if µ = ν and 0
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otherwise. Using this basis, any system observable can be written,

Â =
∑
µ

aµσ̂
s
µ, (5.21a)

aµ =
〈
Â, σ̂sµ

〉
= Tr

(
Âσ̂sµ

)
/2, (5.21b)

where {aµ} are real-valued components of the observable.

Using (5.21), we can expand the probability operators on the system (5.16) in

the basis (5.18) to determine their structure,

ÊD1 =
1

2

(
βd+ − V d∆d

)
σ̂s0 −

1

2
V dΓd σ̂s3, (5.22a)

ÊD2 =
1

2

(
βd− + V d∆d

)
σ̂s0 +

1

2
V dΓd σ̂s3, (5.22b)

where we see that the measurement is characterized by the detector parameters,

βd+ = 2
(
T d1 T

d
2 +Rd

1 R
d
2

)
= 1 + δd1 δ

d
2 , (5.23a)

βd− = 2
(
T d1 R

d
2 +Rd

1 T
d
2

)
= 1− δd1 δd2 , (5.23b)

V d = 4
√
T d1 R

d
1 T

d
2 R

d
2 = εd1 ε

d
2 , (5.23c)

Γd = sin
γ

2
sin
(γ

2
+ φd

)
, (5.23d)

∆d = cosφd − Γd. (5.23e)

defined in terms of the QPC balance parameters (5.4), the tuning phases (5.6),

and the coupling phase γ. We will describe these parameters in detail in the next

section.

The probability operators only contain components in the subspace spanned by

{σ̂s0, σ̂s3}; therefore, we can only construct observables that are contained within that

subspace. That is, we can construct any observable of the form Â = a0σ̂
s
0 + a3σ̂

s
3.

We denote observables of this form as being compatible with the measurement
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(5.22). Other observables are incompatible with the measurement.

To construct such a compatible system observable from the measurement, we

expand its operator directly in terms of the probability operators (5.16),

Â = a0σ̂
s
0 + a3σ̂

s
3 = αD1ÊD1 + αD2ÊD2 . (5.24)

The required expansion coefficients αD1 and αD2 are generalized eigenvalues, or

contextual values [68, 69] of the operator, as developed in Chapters 2 and 3. Using

this expansion, we can recover the same information on average as a projective

measurement by using only the drain probabilities,
〈
Â
〉

= αD1PD1 + αD2PD2 .

To determine the appropriate contextual values to assign in order to construct

Â, we insert (5.22) into (5.24) and solve it as a standard matrix equation using

the orthonormal basis, which yields the unique contextual values,

αD1 = a0 −
a3

Γd

(
βd−
V d

+ ∆d

)
, (5.25a)

αD2 = a0 +
a3

Γd

(
βd+
V d
−∆d

)
. (5.25b)

As long as the contextual values do not diverge, the expansion (5.24) of the

compatible operator Â is well defined, and we can perfectly recover its average,

〈
Â
〉

= 〈ψs| Â |ψs〉 = a0 + a3δ
s
1 . (5.26)

The observable parameter a0 sets the reference point for the average, so contributes

no information about the system; we will set it to zero in what follows without loss

of generality. Similarly, the remaining parameter a3 sets the scale of the average;

we will set it to one in what follows.

We formally conclude that the detector drains perform a generalized measure-

ment of the which-path operator σ̂s3, as might be intuitively expected from the
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Figure 5.3: The contextual values (5.25) of the which-path operator σ̂s3: αD1 (solid,
blue) and αD2 (dashed, red), as a function of the coupling phase γ. The curves are
shown for efficient detection V d = 1 and detector tunings φd = {0, π/2, 3π/4, π}.
The tuning strongly affects the ambiguity of the measurement; moreover, the roles
of the detector drains flip as the tuning varies from φd = 0 to φd = π.

path-dependent interaction. Moreover, the QPC parameter δs1 defined in (5.4a)

determines the particle-like which-path behavior on average. No other information

about the system can be inferred from the measurement.

The contextual values (5.25) are shown in Figure 5.3 for a few parameter

choices. If they are equal to the eigenvalues of the which-path operator, αD1 , αD2 =

±1, then the measurement is unambiguous : one obtains perfect knowledge about

the path information with every drain detection, and the system state is projected

to a pure path state. If the contextual values diverge, αD1 , αD2 → ±∞, then the

measurement is completely ambiguous : no knowledge about the path information

can be obtained, and the system state is unprojected; however, will shall see in

Section 5.2.4 that the system state may still be unitarily perturbed by the cou-

pling. In between these extremes the measurement is partially ambiguous : partial

knowledge is obtained about the path information with each drain detection, and

the system state is partially projected toward a particular path state.
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Figure 5.4: The drain probability PD1 (5.27) as a function of the detector tuning
φd and the which-path information δs1, shown for efficient detection V d = 1 and
coupling phases γ = {0, π/4, π/2, π}. For zero coupling the interference is inde-
pendent of the which-path information; for strong coupling γ = π the interference
maximally corresponds to the which-path information.

5.2.3 Parameters

To better understand the parameters (5.23) we write the drain probabilities (5.17)

explicitly,

PD1 =
1

2

(
βd+ − V d

(
∆d + δs1 Γd

))
, (5.27a)

PD2 =
1

2

(
βd− + V d

(
∆d + δs1 Γd

))
. (5.27b)

The probability PD1 is illustrated in Figure 5.4 for several values of the coupling

strength.
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The particle-like parameters βd+, β
d
− ∈ [0, 1] are determined entirely by the

path-bias parameters δd1 and δd2 ; they indicate the average background signal

of each detector drain and satisfy (βd+ + βd−)/2 = 1. The wave-like parameter

V d ∈ [0, 1] is determined entirely by the path-uncertainty parameters εd1 and εd2 ;

it indicates the visibility of the interference. The parameter Γd ∈ [−1, 1] indicates

the deviation in the interference caused by the coupling phase γ, which is the

only effect of the charge coupling. The parameter ∆d ∈ [−1, 1] indicates the

interference unrelated to the path information of the system. As the coupling

γ → 0, then Γd → 0 and ∆d → cosφd, which recovers the signal for an isolated

interferometer [118]. As the coupling γ → π, then Γd → cosφd and ∆d → 0, and

the interference maximally corresponds to the path information.

The parameters (5.23) also give insight into the nature of the measurement

by the role they play in the contextual values (5.25). The parameter Γd indicates

the correlation between the detector drains and the which-path information. Its

magnitude |Γd| ∈ [0, 1] denotes the correlation strength, with 1 indicating perfect

correlation and 0 indicating no correlation; due to the inverse dependence in (5.25),

any imperfect correlation will amplify the contextual values to compensate for the

resulting measurement ambiguity. The sign of Γd indicates the correspondence of

the detector drains to the which path information, with − denoting the mapping

{D1, D2} ↔ {Ls, U s} and + denoting the mapping {D2, D1} ↔ {Ls, U s}. Note

that the correlation strength depends not only on the coupling phase γ, but also on

the tuning phase φd; hence, it is possible for the detector drains to be uncorrelated

with the system paths even under strong coupling (e.g. examine φd = π/2 in

Figure 5.4 when γ = π).

The parameters βd+ and βd− in (5.25) counterbalance the bias in the average

drain background caused by a preferred particle-like path. For instance, if βd+ > βd−

then the signal at drain D1 is stronger on average in (5.27); hence, the contextual

value (5.25a) assigned to D1 is proportional to the smaller value βd− to compensate.
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The visibility parameter V d controls the wave-like interference produced by Qd
1

and Qd
2. The transmission of each QPC should be balanced in order to provide the

interaction phase with an equal-amplitude reference phase for later interference.

Any imbalance leads to inefficiency of the measurement [170] by reducing the in-

terference visibility, effectively hiding the correlations. Such inefficiency increases

the measurement ambiguity and results in an amplification of the contextual val-

ues. All correlations are hidden at zero interference visibility when either Qd
1 or

Qd
2 is fully transmissive or reflective, T d1 , T

d
2 ∈ {0, 1}, which leads to divergent

contextual values. Maximum interference visibility occurs for balanced transmis-

sion with V d = 1. We see that to optimally measure the particle-like which-path

information for the system, the detector must itself exhibit maximal wave-like

interference; the detector and system behaviors are therefore complementary.

The parameter ∆d is the portion of the interference not affected by the cou-

pling, meaning ∆d + Γd = cosφd. It indicates an additional bias in the drain

correspondence caused by the interference not pertinent to the which-path mea-

surement. The contextual values naturally subtract the contribution from this

irrelevant background interference to retrieve the measurement information. In

the limit of strong coupling γ → π, all the detector interference encodes the

measurement result: Γd → cosφd and ∆d → 0.

Practically speaking, the detector must be calibrated in the laboratory before it

can be used to probe an unknown system state. That is, the detector parameters

(5.23) must be predetermined by examining the drain outputs of the detector

under known system configurations. For example, pinching off QPC Qs
1 to prevent

any interactions allows most of the parameters to be set directly by tuning the

detector QPCs and the magnetic field. The remaining interaction parameter γ

can be inferred from an additional reference system state. Therefore, the process

of detector calibration can be viewed as the experimental determination of the

appropriate contextual values to assign to the detection apparatus.
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5.2.4 Measurement Disturbance

The measurement necessarily disturbs the system state by extracting information.

We can see the effect of such disturbance by characterizing the system interfer-

ometer with analogous parameters to (5.23),

βs+ = 2 (T s1 T
s
2 +Rs

1R
s
2 ) = 1 + δs1 δ

s
2 , (5.28a)

βs− = 2 (T s1 R
s
2 +Rs

1 T
s
2 ) = 1− δs1 δs2 , (5.28b)

V s = 4
√
T s1 R

s
1 T

s
2 R

s
2 = εs1 ε

s
2 , (5.28c)

Γs = sin
γ

2
sin
(γ

2
− φs

)
, (5.28d)

∆s = cosφs − Γs. (5.28e)

Using these parameters the absorption probabilities for the system drain take the

simple form similar to (5.27),

PS1 =
1

2

(
βs+ − V s

(
∆s − δd1 Γs

))
, (5.29a)

PS2 =
1

2

(
βs− + V s

(
∆s − δd1 Γs

))
. (5.29b)

With efficient detection V d = 1 and strong coupling γ → π, then δd1 → 0 and

∆s → 0, so the system drain probabilities display no interference, PS1 → βs+/2

and PS2 → βs−/2; that is, a strongly coupled, efficient which-path measurement

will force particle-like statistics in the system [133, 154].

The measurement disturbance may be analyzed more explicitly by rewriting
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the measurement operators (5.15) for the case of efficient detection V d = 1,

M̂D1 = i eiχ
d
2 eiφ

d/2 Ûγ Ê
1/2
D1
, (5.30a)

M̂D2 = i eiξ
d
2 eiφ

d/2 Ûγ Ê
1/2
D2
, (5.30b)

Ê
1/2
D1

= sin
φd

2
|Ls〉 〈Ls| + sin

φd + γ

2
|U s〉 〈U s| , (5.30c)

Ê
1/2
D2

= cos
φd

2
|Ls〉 〈Ls| + cos

φd + γ

2
|U s〉 〈U s| , (5.30d)

Ûγ = exp
(
i
γ

2
|U s〉 〈U s|

)
. (5.30e)

The disturbance manifests itself as two distinct processes. First, the positive

roots of the POVM (5.16) {Ê1/2
D1
, Ê

1/2
D2
} perform the information extraction nec-

essary for the measurement, partially projecting the reduced system state toward

a particular path. Second, the coupling-dependent unitary factor Ûγ contributes

an additional evolution of the system that is unrelated to the extraction of infor-

mation. The remaining phase factors contribute only to the global phase of the

measured state and do not alter the subsequent measurement statistics.

Unambiguous measurements extract maximal information from the system

and thus project the system state to a definite path; they are frequently known

as projective or strong measurements. Ambiguous measurements extract partial

information from the system and thus partially project the system state toward

a particular path. Completely ambiguous measurements extract no information

from the system and thus are completely unitary. When the system state is

nearly unperturbed up to a global phase, the measurement is called weak, which

corresponds to the case of a nearly completely ambiguous measurement with a

negligible unitary evolution.
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5.2.5 Strong Coupling

An unambiguous measurement can only be obtained in the limits of efficient de-

tection V d → 1 and strong coupling γ → π. In this situation, the ambiguity will

be determined only by the tuning phase of the detector φd, and the POVM will

have the most symmetric dependence on the which-path operator,

αD1 →
−1

cosφd
, (5.31a)

αD2 →
1

cosφd
, (5.31b)

ÊD1 →
1

2

(
1̂− σ̂s3 cosφd

)
, (5.31c)

ÊD2 →
1

2

(
1̂ + σ̂s3 cosφd

)
. (5.31d)

As the tuning phase φd varies, the POVM elements oscillate between pure path

projections and the identity, despite the strong coupling. The tuning-dependent

drain ambiguity contributes to the inefficiency of the measurement by erasing the

potentially extractable which-path information from the detector state. Indeed,

we shall see in Section 5.3.2 that such ambiguity in the measurement allows the

system interference to be recovered by conditioning the system results on specific

detector outcomes: Such a phenomenon is known as quantum erasure [49, 158–

162].

In a laboratory quantum Hall system the AB phase will precess due to slow

decay of the transverse magnetic field, so the tuning phase φd will also precess

slowly. Hence, the ambiguity of the measurement will generally oscillate between

extremes, while also flipping the correspondence of the drains to the which-path

information. Despite any ambiguity in the measurement, however, the system

will always be perturbed by the additional unitary evolution (5.30e) that induces

a relative phase shift of π/2 between the arms. Since the system state will be

appreciably altered by the strong coupling, the measurement will not be weak
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even when completely ambiguous. Hence, ambiguity of the measurement need not

indicate weakness of the measurement.

The measurement becomes unambiguous when the tuning is held fixed at

cosφd = ±1. In this situation, the detector drains are perfect “bright” and “dark”

ports: detection at the dark port will occur deterministically when the system ex-

citation is in the upper arm. The detector drains are perfectly correlated to the

which-path information of the system, so the system state is projected to a definite

path, and the measurement is strong.

5.2.6 Weak Coupling Limit

The weak coupling limit is the limit as the coupling phase γ → 0 and the system

and detector become nearly uncoupled. Since at zero coupling the measurement

operators (5.30) must either be zero or be proportional to the identity, the weak

coupling limit of a measurement must have outcomes that are inherently ambigu-

ous. Hence, we expect the contextual values (5.25) to diverge. However, since

Γd = sinφd(γ/2) + cosφd(γ/2)2 + O(γ3) the nature of the divergence will also

depend upon the tuning.

If the tuning is not an integer multiple of π, then both measurement operators

(5.30) will approach the identity as γ → 0 and the measurement will be weak

for all outcomes. That is, the system state will be nearly unperturbed for any

outcome of the measurement. In this case, Γd = sinφd(γ/2) + O(γ2) and the

divergence of the contextual values (5.25) will be linear in γ. For an efficient
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detector with V d = 1, we find to O(γ2),

αD1 → 1− 2

γ

1 + cosφd

sinφd
, (5.32a)

αD2 → 1 +
2

γ

1− cosφd

sinφd
, (5.32b)

ÊD1 →
1− cosφd

2
1̂ +

γ

2
sinφd |U s〉 〈U s| , (5.32c)

ÊD2 →
1 + cosφd

2
1̂− γ

2
sinφd |U s〉 〈U s| . (5.32d)

The POVM has simple dependence on the projection to the upper path, which

can also be written in terms of the which-path operator, |U s〉 〈U s| = (1̂− σ̂s3)/2.

The most symmetric case of φd = π/2 is shown in the upper-right of Figure 5.3.

However, if the tuning φd = nπ with integer n, then only one of the mea-

surement operators will approach the identity as γ → 0. The remaining outcome

remains proportional to a projector with a vanishing coefficient and will thus

strongly perturb the system state. Hence, only one contextual value diverges

while the other remains a constant eigenvalue. In this case, Γd = (−1)n sin2(γ/2)

so the divergence will be quadratic in γ. We call such a measurement a semi-

weak measurement [69] since only a subset of outcomes are weak. For an efficient

detector with V d = 1, we find,

αD1 →
−1

sin2 γ
2

(
(−1)n + cos2 γ

2

)
, (5.33a)

αD2 →
1

sin2 γ
2

(
(−1)n − cos2 γ

2

)
, (5.33b)

ÊD1 →
1

2
(1− (−1)n)1̂ + (−1)n sin2 γ

2
|U s〉 〈U s| , (5.33c)

ÊD2 →
1

2
(1 + (−1)n)1̂− (−1)n sin2 γ

2
|U s〉 〈U s| . (5.33d)

The POVM retains the simple dependence on the projection to the upper path.

The cases for n = 0 and n = 1 are shown in the upper-left and lower-right of
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Figure 5.5: Left: The raised cosine distribution showing a spread in the coupling
phase centered at γ = π/2 by a half-width σ = π/4. Right: The inefficiency factor
η(σ) defined in (5.36) as a function of the half-width σ.

Figure 5.3, respectively.

For the semi-weak measurement, the effect of absorption at one of the drains

is projective. The projective drain outcome unambiguously indicates that the sys-

tem excitation took the upper U s path; therefore, the contextual value assigned

to the complementary drain is an eigenvalue. In contrast, the effect of absorption

at the complementary drain only weakly perturbs the system state. Its outcome

only ambiguously corresponds to which-path information; therefore, the contex-

tual value assigned to the projective drain must be amplified. Such complementary

behavior of the contextual value amplification can be counter-intuitive, but it em-

phasizes that the function of the amplification is to compensate for the ambiguity

of the measurement.

We shall see in Section 5.3.6 that while conditioned averages of the weak

measurements (5.32) will lead to weak values, the conditioned averages of the semi-

weak measurements (5.33) have different limiting behavior and lead to different

values. The two limiting cases will compete depending on the relative magnitudes

of γ and φd.
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5.2.7 Fluctuating Coupling

If the coupling between excitation pairs is not a constant relative phase γ, but in-

stead can fluctuate within a finite uncertainty width σ around an average γ, then

the average measurement will be correspondingly more ambiguous. We could

quantify this effect by averaging the joint state (5.10) over a range of coupling

phases to create a mixed state represented by a density operator; the measure-

ment operators (5.15) and resulting POVM (5.16) could then be generalized to

an averaged measurement from that density operator. However, that procedure

would be completely equivalent to the simpler procedure of averaging the prob-

ability operators (5.16) over the coupling width directly, which we choose to do

here.

For simplicity, we consider as a coupling distribution the raised cosine distribu-

tion, which is Gaussian-like, but has compact support. We center the distribution

around γ ∈ [0, 2π], and give it the half-width σ ∈ [0, π]. The density for the

distribution is nonzero in the domain γ′ ∈ [γ − σ, γ + σ] and has the form,

P (γ′) =
1

2σ

(
1 + cos

(π
σ

(γ′ − γ)
))

. (5.34)

An example of the distribution is shown in Figure 5.5 centered at γ = π/2 and

with half-width σ = π/4.

Averaging the probability operators (5.16) only affects the constant Γd, which

is replaced by the averaged version,

Γd(γ)→
∫ γ+σ

γ−σ
dγ′ P (γ′)Γd(γ′) = η(σ)Γd(γ), (5.35)

η(σ) =

(
π2

π2 − σ2

)(
sinσ

σ

)
. (5.36)

A plot of the damping factor η(σ) is shown in Figure 5.5.

We assumed in (5.2) that the source emits only excitation pairs. However,
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any contribution of unpaired excitations in the initial joint state is equivalent to a

contribution of joint states with γ = 0. The net effect of the source emitting such

unpaired excitations is thus to modify Γd by an additional probability factor Pp

that denotes the likelihood of pair emission. Hence, the only effect of an imperfect

source is to introduce a net inefficiency factor η′ = Pp η(σ) ∈ [0, 1] in the parameter

Γd.

Since the contextual values (5.25) inversely depend on Γd, any such inefficiency

will introduce an overall amplification factor of 1/η′. In other words, any uncer-

tainty in the coupling strength will lead to additional ambiguity in the average

measurement by degrading the portion of the detector interference that is coupled

to the system.

5.2.8 Observation Time

Since ambiguous measurements provide less information about an observable per

measurement, more measurements will be required to achieve a desired precision

for an observable average. We can characterize the necessary increase in observa-

tion time as follows. The total detector current is I = (e2V P )/h = e/τm according

to (5.1b), where P is the total probability for excitations to traverse the sample;

hence, we can infer that the average time per detector absorption is τm = h/eV P .

For our single-particle model to apply we wish for the voltage bias V to be low

enough that the interferometers contain less than one excitation per channel on

average. The characteristic measurement time τm will then be on the order of

the time-of-flight τm ≈ `/vF of an excitation pair through the sample, where ` is

the average path length of the interferometers and vF is the Fermi velocity of the

ballistic excitations. An observation time of T at the drains D1 and D2 therefore

roughly corresponds to n ≈ T/τm individual measurement events.

The contextual values can be used to provide an upper bound for the number of
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measurement events for a desired root-mean-square (RMS) error in the estimation

of the average. Specifically, to estimate the average 〈σ̂s3〉 from a sequence of n

random drain absorptions (d1, d2, · · · , dn), where di ∈ {D1, D2}, one can use an

unbiased estimator for the average,

E[σ̂z] =
1

n

n∑
i

αdi , (5.37)

that is defined in terms of the contextual values assigned to each measurement

realization. As n→∞, the estimator (5.37) converges to 〈σ̂s3〉 = αD1PD1+αD2PD2 .

The mean squared error (MSE) of this estimator is given by the variance of the

contextual values over the number of measurements,

MSE[E[σ̂z]] =
α2
D1
PD1 + α2

D2
PD2 − 〈σ̂s3〉

2

n
. (5.38)

Hence, the RMS error
√

MSE[E] scales as 1/
√
n and improves with an increasing

number of measurements.

Without prior knowledge of the state, a reasonable upper bound one can make

for the MSE is the norm-squared of the contextual values over the number of

measurements,

MSE[E[σ̂z]] ≤
α2
D1

+ α2
D2

n
. (5.39)

It then follows that to guarantee a maximum desired RMS error ε one needs an

observation time on the order of,

T ≈ τm
α2
D1

+ α2
D2

ε2
. (5.40)

As the measurement becomes more ambiguous the contextual values become more

amplified and so lengthen the observation time necessary to achieve the RMS
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error of ε. For a strong measurement the upper bound on the observation time is

T ≈ 2τm/ε
2.

5.3 Conditioned Measurements

To gain further insight into the which-path information, we can condition the

measurement on the subsequent absorption of the system excitation at a specific

system drain. To do this we must obtain the joint transmission probabilities for

pairs of detector and system drains. Conditional probabilities can then be defined

in terms of the joint and single transmission probabilities.

As pointed out by Kang [154] these probabilities are experimentally accessible

in the low-bias regime through the zero-frequency cross-correlation noise power

between a detector drain D ∈ {D1, D2} and a system drain S ∈ {S1, S2},

SD,S ≈ 2
e3V

h
(PS,D(EF )− PS(EF )PD(EF )). (5.41)

Hence, knowledge of both the average currents (5.1) and the noise power (5.41)

allows the determination of both the joint and single transmission probabilities.

5.3.1 Joint Scattering

We can determine the joint probabilities directly in the scattering model by rewrit-

ing (5.10) in the basis of the system drains using (5.3),

â†Ls
â†Us

 = Û s
2

â†S1

â†S2

 (5.42)
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yielding,

|Ψ′′′〉 =
(
CD1,S1 â

†
D1
â†S1

+ CD1,S2 â
†
D1
â†S2

+ CD2,S1 â
†
D2
â†S1

+ CD2,S2 â
†
D2
â†S2

)
|0〉 ,

(5.43)

up to the same global phase as in (5.10).

The relevant joint scattering amplitudes are,

CD1,S1 = ei(χ
d
2 +χs2 )× (5.44a)[

rd1 r
d
2 r

s
1 r

s
2 + td1 t

d
2 r

s
1 r

s
2 e

i(φd+γ) + rd1 r
d
2 t

s
1 t
s
2 e

iφs + td1 t
d
2 t

s
1 t
s
2 e

i(φd+φs)
]
,

CD1,S2 = ei(χ
d
2 +ξs2 )× (5.44b)[

rd1 r
d
2 r

s
1 t
s
2 + td1 t

d
2 r

s
1 t
s
2 e

i(φd+γ) + rd1 r
d
2 t

s
1 r

s
2 e

iφs + td1 t
d
2 t

s
1 r

s
2 e

i(φd+φs)
]
,

CD2,S1 = ei(ξ
d
2 +χs2 )× (5.44c)[

rd1 t
d
2 r

s
1 r

s
2 + td1 r

d
2 r

s
1 r

s
2 e

i(φd+γ) + rd1 t
d
2 t

s
1 t
s
2 e

iφs + td1 r
d
2 t

s
1 t
s
2 e

i(φd+φs)
]
,

CD2,S2 = ei(ξ
d
2 +ξs2 )× (5.44d)[

rd1 t
d
2 r

s
1 t
s
2 + td1 r

d
2 r

s
1 t
s
2 e

i(φd+γ) + rd1 t
d
2 t

s
1 r

s
2 e

iφs + td1 r
d
2 t

s
1 r

s
2 e

i(φd+φs)
]
.

The joint probabilities for absorption in detector drain D ∈ {D1, D2} and

system drain S ∈ {S1, S2} can then be understood as either expectations of joint

projections |S〉 〈S| ⊗ |D〉 〈D| under the joint state (5.43), or, equivalently, as

expectations of system projections |S〉 〈S| under the measured reduced system

state M̂D |ψs〉,

PD,S = | 〈S,D|Ψ′′′〉 |2 = | 〈S| M̂D |ψs〉 |2 = |CD,S|2. (5.45)

These joint probabilities can be written explicitly in terms of the parameters
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Figure 5.6: The joint probability PD1,S1 (5.46a) with system tuning φs = 0 as a
function of the detector tuning φd and the which-path information δs1, shown for
efficient detection V d = 1, balanced system drains εs2 = 1, and the coupling phases
γ = {0, π/4, π/2, π}.

(5.4), (5.23), and (5.28) as,

PD1,S1 =
1

4

(
βd+β

s
+ + V dV s∆ds (5.46a)

− V d
(
∆dβs+ + Γd (δs1 + δs2 )

)
− V s

(
∆sβd+ − Γs

(
δd1 + δd2

)) )
,

PD1,S2 =
1

4

(
βd+β

s
− − V dV s∆ds (5.46b)

− V d
(
∆dβs− + Γd (δs1 − δs2 )

)
+ V s

(
∆sβd+ − Γs

(
δd1 + δd2

)) )
,
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Figure 5.7: The joint probability PD1,S1 (5.46a) with system tuning φs = π/2 as
a function of the detector tuning φd and the which-path information δs1, shown
for efficient detection V d = 1, balanced system drains εs2 = 1, and the coupling
phases γ = {0, π/4, π/2, π}.

PD2,S1 =
1

4

(
βd−β

s
+ − V dV s∆ds (5.46c)

+ V d
(
∆dβs+ + Γd (δs1 + δs2 )

)
− V s

(
∆sβd− − Γs

(
δd1 − δd2

)) )
,

PD2,S2 =
1

4

(
βd−β

s
− + V dV s∆ds (5.46d)

+ V d
(
∆dβs− + Γd (δs1 − δs2 )

)
+ V s

(
∆sβd− − Γs

(
δd1 − δd2

)) )
,
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Figure 5.8: The conditional probability PD1|S1 = PD1,S1/PS1 with system tunings
φs = 0 (left) and φs = π/2 (right) as a function of the detector tuning φd and the
which-path information δs1, shown for efficient detection V d = 1, balanced system
drains εs2 = 1, and the coupling phases γ = {0, π}.

where we have defined the additional parameter ∆ds as,

∆ds = cosφd cosφs − Γds, (5.47a)

Γds = sin
γ

2
sin
(γ

2
+ φds

)
, (5.47b)

φds = φd − φs. (5.47c)

For illustration purposes, we have plotted the joint probability PD1,S1 (5.46a) for

several parameter choices in Figure 5.6 and Figure 5.7.

The parameter ∆ds ∈ [−1, 1] represents the joint interference between the

system and detector. The parameter Γds ∈ [−1, 1] is the portion of the joint
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interference that depends explicitly on the coupling phase γ and the difference

between the tuning phases φds. As the coupling γ → 0, then Γds → 0 and the

joint interference reduces to a decoupled interference product ∆ds → cosφd cosφs.

As the coupling γ → π, then Γds → cosφds and the joint interference will be

maximally coupled ∆ds → − sinφd sinφs.

We can marginalize the joint probabilities (5.46) to obtain both the detector

probabilities (5.27) as PD =
∑

S PD,S and the system probabilities (5.29) as PS =∑
D PD,S. Furthermore, we can construct the conditional probabilities PD|S for

absorption in a detector drain D given an absorption in a system drain S, as well

as the conditional probabilities PS|D for absorption in a system drain S given an

absorption in a detector drain D,

PD|S =
PD,S
PS

, (5.48a)

PS|D =
PD,S
PD

. (5.48b)

For comparison with the joint probabilities, we have plotted the conditional de-

tector probability PD1|S1 in Figure 5.8 for several parameter choices.

5.3.2 Quantum Erasure

We can use the conditional system probabilities PS|D to clarify the phenomenon

of quantum erasure [49, 158–162], which has also been explored in this system by

Kang [154]. Any wave-like interference patterns in the system drain probabilities

will degrade with the coupling phase γ, as shown in the upper-left of Figure 5.9

for PS1 and maximum system visibility V s = 1. At strong coupling γ = π the

wave-like interference will be completely destroyed. However, parts of the inter-

ference may be restored by conditioning the drain on an appropriate detector

measurement.
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Figure 5.9: Quantum erasure. Any system interference in the system drain prob-
ability PS1 (upper-left, black) is completely destroyed at strong coupling γ = π
(gray, dashed). Conditioning on the detector drains recovers phase-shifted inter-
ference in the conditional probabilities PS1|D1 and PS1|D2 (bottom), but with a
visibility that is dependent on the measurement ambiguity as controlled by the
detector tuning phase φd. The contextual values {αD1 , αD2} (upper-right) diverge
for maximum ambiguity and reduce to the eigenvalues of the which-path operator
σ̂s3 for zero ambiguity. The plots are shown for efficient detection V d = 1, strong
coupling γ = π, and maximum system visibility V s = 1.

To restore the interference in the system statistics, the detector must make an

ambiguous measurement, as we shall see. Strong coupling destroys the interference

in the unconditioned system statistics by recording the which-path information

in the detector state via the coupling phase γ. As the which-path information

is available in the detector state for later collection, at least in principle, the

total reduced system statistics must reflect the degree of potential information

acquisition. However, such information in the detector state has not yet been

extracted classically since the detector drains have not yet been probed; hence, the

information in the state only indicates the potential for later extraction of which-
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path information at the detector drains. A partially ambiguous measurement

extracts some of that potential information and erases the rest; a completely

ambiguous measurement extracts no information and erases all of the potential

for later extraction in the process. The recovered interference in the conditioned

system statistics reflects the erasure of the information acquisition potential by the

ambiguous measurement, even though the total statistics of the reduced system

are unchanged by probing the detector.

As discussed in Section 5.2.5 the detector phase φd determines the ambiguity

of the measurement under such strong coupling, so the degree of possible erasure

will also depend on the detector phase. We can see the dependence of the interfer-

ence recovery on φd in Figure 5.9 in the lower two plots. As the detector phase φd

varies from 0 to 2π, the conditional probabilities PS1|D1 and PS1|D2 continuously

vary from flat particle-like statistics to complementary wave-like interference pat-

terns. The visibilities of the complementary interference patterns directly depend

on the measurement ambiguity, as can be seen in the plot of the contextual values

in the upper-right of Figure 5.9. Maximum visibility corresponds to maximum

measurement ambiguity where the contextual values diverge; zero visibility cor-

responds to zero measurement ambiguity where the contextual values reduce to

the eigenvalues of the which-path operator. We also note that the effect of the

additional coupling evolution (5.30e) creates a π/2 phase shift in the interference

pattern that cannot be erased since it is not part of the information extraction of

the measurement.

Such erasure under strong coupling has an intuitive analogy to an optical

double-slit experiment (that you can even try at home!) [162] as shown in Fig-

ure 5.10. In the optical equivalent, a coherent beam of light passes through two

slits and displays an interference pattern on a remote screen. However, if an ex-

perimenter tags each slit with horizontal and vertical polarizing filters, then the

which-path information of the light can later be extracted from the polarization
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a)

b)

Figure 5.10: Analogy to optical quantum erasure of two-slit interference. a) A
coherent light beam passes through two slits tagged with horizontal (h) and ver-
tical (v) polarization. After conditioning on a subsequent polarizer oriented at an
angle θ to horizontal, an interference pattern can be recovered with a visibility
that depends upon θ. b) A coherent electron passes through a QPC and is tagged
by a detector electron via an interaction phase shift γ. After conditioning on the
drain D2 after a subsequent detector QPC that forms an MZI with tuning phase
φd, an interference pattern can be recovered in the system drain S1 as the system
tuning φs is varied with a visibility that depends upon φd.

degree of freedom; hence, the total interference pattern on the remote screen will

be destroyed. The experimenter can subsequently condition the measurement on

a particular polarization by placing another polarizer after the two slits oriented

at some angle θ relative to horizontal. If the conditioning polarizer is oriented

horizontally or vertically, then the path measurement will be unambiguous and

extract all which-path information, so no conditioned system interference will be

recovered. However, if the conditioning polarizer is oriented diagonally, then the

path measurement will be completely ambiguous and the potential which-path
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information will be erased, recovering all of the interference in the conditioned

statistics. In the electronic version, the system excitation plays the role of the

light beam, the relative coupling phase γ records the potential path information,

the conditioning on a particular detector drain plays the role of the polarizer,

and the tuning phase φd selects the conditioning basis analogously to the angle θ,

controlling the ambiguity of the measurement and degree of erasure.

Furthermore, one could in principle implement a delayed-choice [158, 159, 161]

version of the quantum erasure by placing the detector drains much further away in

the sample than the system drains. The interaction phase γ could be recorded and

the system excitations collected, upon which a controlled change in the magnetic

field could set the tuning phase of the detector. Upon conditioning the data, the

interference would reappear according to which tuning phase had been chosen

after the system excitation had already been collected.

We stress that the erasure of the potential which-path information and recovery

of the system interference will be apparent only when conditioning the collected

data. Without conditioning, even completely ambiguous measurements under

strong coupling will destroy the system interference. The interference patterns

recovered by conditioning on the detector drains will be complementary to each

other in such a case and thus cancel in the unconditioned statistics.

5.3.3 Conditioned Averages

We can also use the conditional probabilities to condition the averages of the

which-path measurement on a subsequent system drain absorption. To do this,

we weight the conditional detector probabilities (5.48) with the contextual values

for the measurement (5.25) [68],

〈σ̂s3〉S =
∑
D

αDPD|S. (5.49)
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In terms of the various characterization parameters, these take the explicit form,

〈σ̂s3〉S1
=

1

2PS1

(
δs1 + δs2 − V sΞds

Γd

)
, (5.50a)

〈σ̂s3〉S2
=

1

2PS2

(
δs1 − δs2 + V sΞds

Γd

)
, (5.50b)

where there is a joint interference contribution to the conditioned average,

Ξds = ∆ds − (∆s − δd1 Γs) +
δd1 δ

d
2

V d

(
∆sβd− − Γs

(
δd1 + δd2

))
. (5.51)

The joint interference simplifies considerably in the special case of efficient

detection V d = 1,

Ξds

Γd
→ 2 sin

γ

2
cot
(γ

2
+ φd

)
cos
(γ

2
− φs

)
. (5.52)

This case is plotted in Figure 5.11.

The interference term is scaled by the visibility of the system interference

V s, which measures the wave-like behavior of the system excitation. Any wave-

like behavior of the system leads to a contribution to the conditioned averages

that depends on properties of the correlated detector as well, due to the joint

interference. Hence, the which-path information of the system cannot be decoupled

from the detector that is measuring it in general.

The conditioned averages properly obey the consistency relation,

〈σ̂s3〉 =
∑
S

〈σ̂s3〉S PS, (5.53)

and are bounded by the contextual values (5.25). Since the contextual values

are usually larger than the eigenvalues of σ̂s3 due to amplification from measure-

ment ambiguity, the conditioned averages can counter-intuitively lie outside the

eigenvalue range. In the weak coupling limit γ → 0, such conditioned averages
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Figure 5.11: The conditioned average 〈σ̂s3〉S1
(5.50a) as a function of the coupling

phase γ and the which-path information δs1, shown for efficient detection V d = 1,
balanced system drains εs2 = 1, and tuning phases φd, φs = {0, π/2}.

can become detector-independent and converge to weak values [28, 68], as we will

show later.

However, for any macroscopic property such conditioned averages will always

lie inside the eigenvalue range, even when measured ambiguously. As shown in

Chapter 4, the eigenvalue range constraint for conditioned averages is equivalent

to a generalized Leggett-Garg constraint [69, 103, 107] that must be satisfied

for any non-invasively measured, realistic property. As such, any violation of the

eigenvalue range in a conditioned average can be seen as a signature of nonclassical

behavior stemming from quantum interference.
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5.3.4 Deterministic Measurement

If either of the system QPCs is fully transmissive or reflective then V s = 0, the

system interference vanishes, and the conditioned averages (5.50) reduce to ±1

for any coupling strength. In such a case the excitation path is deterministic and

the system displays purely particle-like behavior. The post-selection perfectly

determines the path, and the which-path measurement made by the detector will

always agree with the post-selected value.

5.3.5 Strong Coupling

For the case of strong coupling γ = π and an efficient detector V d = 1, the

conditioned averages (5.50) reduce to,

〈σ̂s3〉S1
→ δs1 + δs2

βs+
+
V s

βs+
tanφd sinφs, (5.54a)

〈σ̂s3〉S2
→ δs1 − δs2

βs−
− V s

βs−
tanφd sinφs. (5.54b)

The tuning phase φd is the sole detector parameter that specifies the ambiguity

of the measurement.

If the measurement is also unambiguous φd → nπ, then the interference con-

tribution vanishes. The conditioned averages become the detector-independent

quantities 〈σ̂s3〉S1
→ (δs1 + δs2 )/βs+ and 〈σ̂s3〉S2

→ (δs1 − δs2 )/βs− that always lie in

the eigenvalue range. A strong which-path measurement made by the detector

therefore forces the system excitation to display particle-like conditioned statistics.

However, even with strong coupling any ambiguity introduced in the detector

will lead to quantum erasure that recovers interference in the conditioned statistics

of the system, as discussed in Section 5.3.2. Such recovered interference can take

the conditioned averages of the which-path information outside the eigenvalue

range. For an almost completely ambiguous measurement the tuning phase will
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Figure 5.12: The weak limit γ → 0 of the conditioned averages 〈σ̂s3〉S1
(top) and

〈σ̂s3〉S2
(bottom) for the distinct cases of weak measurement φd 6= 0 (left) given in

(5.55) and semi-weak measurement φd = 0 (right) given in (5.57) as a function of
the system tuning φs and the which-path information δs1. The values are shown
for efficient detection V d = 1 and balanced system drains εs2 = 1.

deviate from π/2 only by a small angle δφd. Since tan(π/2 + δφd) = −1/δφd +

O(δφd), the interference contribution will dominate, and the conditioned averages

will diverge.

5.3.6 Weak Coupling Limit

The weak coupling limit γ → 0 of an efficient detector V d = 1 leads to conditioned

averages (5.50) that generally depend on the detector tuning φd, as anticipated

during the discussion in Section 5.2.6. For the weak measurement case when the

detector tuning is not an integer multiple of π, then as γ → 0 the joint interference
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term in the numerators of (5.50) vanishes, sin(γ/2) cot(γ/2 + φd) → 0, yielding

the detector-independent quantities,

〈σ̂s3〉S1
→ δs1 + δs2

βs+ − V s cosφs
, (5.55a)

〈σ̂s3〉S2
→ δs1 − δs2

βs− + V s cosφs
. (5.55b)

In contrast with the unambiguous case, system interference remains in the de-

nominators.

These expressions match the real parts of the weak value expressions defined

in Aharonov et al. [28],

〈σ̂s3〉S1

w =
〈S1| σ̂s3 |ψs〉
〈S1|ψs〉

=
δs1 + δs2

βs+ − V s cosφs
− i V s sinφs

βs+ − V s cosφs
, (5.56a)

〈σ̂s3〉S2

w =
〈S2| σ̂s3 |ψs〉
〈S2|ψs〉

=
δs1 − δs2

βs+ + V s cosφs
+ i

V s sinφs

βs+ + V s cosφs
. (5.56b)

As pointed out in Section 3.5 any additional unitary coupling evolution such as

(5.30e) could in principle affect the convergence of the conditioned averages to

these detector-independent weak value expressions. However, in this case the

limit is unaffected and the standard expressions are recovered.

For the semi-weak measurement case when φd = nπ with n an integer, then

as γ → 0 the joint interference term in the numerators of (5.50) reduces to

sin(γ/2) cot(γ/2 + nπ) → (−1)n; therefore, system interference remains in both

the numerators and denominators, yielding the modified expressions,

〈σ̂s3〉S1
→ δs1 + δs2 − (−1)nV s cosφs

βs+ − V s cosφs
, (5.57a)

〈σ̂s3〉S2
→ δs1 − δs2 + (−1)nV s cosφs

βs− + V s cosφs
. (5.57b)

The integer n selects which detector drain is projective. Hence, unlike the weak

values (5.56), these “semi-weak values” do not conform to general detector-independent
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expressions, but explicitly depend on the details of the measurement operators

(5.30).

We emphasize that the detector tunings φd = nπ are critical points around

which the γ → 0 limit is unstable, meaning that any laboratory approach to the

weak coupling limit of the conditioned averages (5.50) can approximate either

the weak values (5.55) or the semi-weak values (5.57) depending on the relative

magnitudes of γ and φd. Hence, the limiting values will compete with each other

as γ becomes small and φd approaches a critical point. The difference between

these limiting cases is plotted in Figure 5.12 using the choice n = 0.
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6 The Complex Weak Value

Strangeness by itself is not a problem; self-consistency is the real issue. In
this sense the logic of the weak values is similar to the logic of special rel-
ativity: That light has the same velocity in all reference frames is certainly
highly unusual, but everything works in a self consistent way, and because of
this special relativity is rather easy to understand. We are convinced that,
due to its self-consistency, the weak measurements logic will lead to a deeper
understanding of the nature of quantum mechanics.

Yakir Aharonov et al., (2002) [152]

In their seminal Letter, Aharonov et al. [28] claimed that they could consis-

tently assign a particular value to an observable that was being weakly measured

in a pre- and post-selected ensemble. To illustrate their technique, they weakly

coupled an observable Â to a continuous detector with an initial Gaussian wave-

function. Normally, such a weak von Neumann coupling [11] would approximately

shift the mean of the Gaussian detector wave-function by the expectation value

〈ψi| Â |ψi〉 of Â in the initial state |ψi〉, which would effectively measure Â; how-

ever, they showed that by post-selecting a final state |ψf〉 after the weak coupling,

the mean of the Gaussian detector wave-function could be made to approximately

shift by a complex quantity that they dubbed the weak value of the observable,

Aw =
〈ψf | Â |ψi〉
〈ψf |ψi〉

. (6.1)
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Notably, the weak value expression is not constrained to the eigenvalue range for

the observable Â, so it can become arbitrarily large for nearly orthogonal pre- and

post-selections.

This complex shift in the mean of the Gaussian detector wave-function was

only approximate under weak von Neumann coupling and not directly observable,

so its significance was not overtly clear; however, the Letter [28] also showed that

both the real and imaginary parts of (6.1) could be operationally obtained from the

linear response of the detector under separate conjugate observable measurements.

The practical benefit of this observation was that one could amplify the response

of the detector by making a clever choice of post-selection, which potentially

allowed for the sensitive determination of other small parameters contributing to

the evolution.

After theoretical clarifications of the derivation in [29], experimental confirma-

tion of such amplified detector response soon followed in optical systems [44, 174].

The amplification has since been used successfully to sensitively measure a variety

of phenomena [50, 51, 55, 56, 175, 176] to remarkable precision, using both the

real and imaginary parts of (6.1) as amplification parameters. Several theoreti-

cal extensions of the original derivation of the amplification [33, 34, 37, 39, 40,

42, 43, 53, 177–185] and several proposals for other amplification measurements

have also appeared [41, 173, 186–188]. In particular, it has been noted that how

the amplification effect arises in such a continuous wave-function detector is not

intrinsically quantum mechanical, but can also occur in classical wave mechan-

ics [54], which has prompted recent study into the mathematical phenomenon of

superoscillations (e.g. [189, 190]).

Conceptually, however, the weak value expression (6.1) has remained quite

controversial: since it is generally complex and not constrained to the spectrum

of Â, how should it be interpreted? Its primary interpretation in the literature has

rested somewhat loosely upon the observation that despite its anomalous behavior
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one can still decompose an expectation value through the insertion of the identity

into an average of weak values,

〈ψi| Â |ψi〉 =
∑
f

|〈ψf |ψi〉|2
〈ψf | Â |ψi〉
〈ψf |ψi〉

, (6.2)

which has the same form as decomposing a classical expectation value E(X|i)

into an average of conditioned expectation values E(X|i) =
∑

f P (f |i)E(X|i, f).

This observation, together with its approximate appearance operationally in weak

conditioned measurements, make it tempting to interpret the weak value as a

disturbance-free counter-factual conditioned average that can be assigned to the

observable within the context of a pre- and post-selected ensemble even when it

is not strictly measured [30, 31, 66, 191].

Supporting this point of view is the fact that when the real part of (6.1) is

bounded by the eigenvalue range of Â, it agrees with the classical conditioned

expectation value for the observable [31]. Moreover, even when the real part

is outside the normal eigenvalue range, it still obeys a self-consistent logic [32]

and seems to indicate oddly sensible information regarding the operator Â. As

such, it has been used quite successfully to analyze and interpret many quantum-

mechanical paradoxes both theoretically and experimentally, such as tunneling

time [192–195], vacuum Cherenkov radiation [196], cavity QED correlations [45],

double-slit complementarity [46, 49], superluminal group velocities [197], the N-

box paradox [198, 199], phase singularities [200], Hardy’s paradox [38, 52, 152,

153], photon arrival time [201], Bohmian trajectories [58, 202–204], and Leggett-

Garg inequality violations [57, 69, 103] (as shown in Chapter 4).

Arguably more important for its status as a quantity pertaining to the mea-

surement of Â, however, is the fact that the real part of (6.1) appears as a stable

weak limit point for conditioned measurements even when the detector is not a

von Neumann-coupled continuous wave that can experience superoscillatory in-



156

terference (e.g. [48, 57, 69, 72, 205]). As a result, we can infer that at least the

real part of (6.1) must have some operational significance specifically pertaining

to the measurement of Â that extends beyond the scope of the original derivation.

Indeed, a principled contextual value treatment of a general conditioned av-

erage of an observable can in fact converge in the weak measurement limit to a

generalized expression for the real part of (6.1),

ReAw =
Tr
(
P̂f{Â, ρ̂i}

)
2Tr

(
P̂f ρ̂i

) , (6.3)

where {Â, ρ̂i} = Âρ̂i + ρ̂iÂ is the anti-commutator between the observable op-

erator and an arbitrary initial state ρ̂i represented by a density operator, and

where P̂f is an arbitrary post-selection represented by an element from a positive

operator-valued measure (POVM)1. The general conditioned average converges to

(6.3) provided that the manner in which Â is measured satisfies reasonable suf-

ficiency conditions [68, 70, 71] that ensure that the disturbance intrinsic to the

measurement process does not persist in the weak limit (see Section 3.5).

It is in this precise restricted sense that we can operationally interpret the

real part of the weak value (6.3) as an idealized conditioned average of Â in

the limit of zero measurement disturbance. Since it is also the only apparent

limiting value of the general conditioned average that no longer depends on how

the measurement of Â is being made, it is also distinguished as a measurement

context-independent conditioned average, as anticipated in the discussion around

(3.43). These observations provide strong justification for the treatment of the real

part of the weak value (6.3) as a form of value assignment [30, 31, 63, 64, 66, 191]

for the observable Â that depends only upon the preparation and post-selection2.

1This equation is a restatement of (3.43) in an operator form, proved in Section 3.5.
2Note that such a value assignment does not violate the Bell-Kochen-Specker theorem [63,

64, 66] since (6.3) does not generally obey the product rule, (AB)w 6= AwBw.
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However, we are still left with a mystery: what is the significance of the

imaginary part of (6.1) that appears in the von Neumann measurement, and how

does it relate to the operator Â? We can find a partial answer to this question

in existing literature (e.g. [31, 33, 192, 193]) that has associated the appearance

of the imaginary part of (6.1) in the response of the detector with the intrinsic

disturbance, or back-action, of the measurement process. For example, regarding

continuous von Neumann detectors Aharonov and Botero [31, p.8] note that “the

imaginary part of the complex weak value can be interpreted as a ‘bias function’ for

the posterior sampling point [of the detector].” Furthermore, they note that “the

weak value of an observable Â is tied to the role of Â as a generator for infinitesimal

unitary transformations” [31, p.11]. Similarly, while discussing measurements of

tunneling time Steinberg [192] states that the imaginary part is a “measure of

the back-action on the particle due to the measurement interaction itself” and

that the detector shift corresponding to the imaginary part “is sensitive to the

details of the measurement apparatus (in particular, to the initial uncertainty in

momentum), unlike the [shift corresponding to the real part].”

In Section 6.3, we will augment these observations in the literature by providing

a precise operational interpretation of the following generalized expression for the

imaginary part of (6.1),

ImAw =
Tr
(
P̂f [−iÂ, ρ̂i]

)
2Tr

(
P̂f ρ̂i

) , (6.4)

where [Â, ρ̂i] = Âρ̂i − ρ̂iÂ is the commutator between Â and the initial state. We

will see that the imaginary part of the weak value does not pertain to the measure-

ment of Â as an observable. Instead, we will interpret it as half the logarithmic

directional derivative of the post-selection probability along the flow of the group

action generated by the operator Â. As such, it provides an explicit measure for

the idealized disturbance that the coupling to Â would have induced upon the
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initial state in the limit that the detector was not measured, which resembles the

suggestion by Steinberg [192]; however, we shall see that the measurement of the

detector can strongly alter the state evolution away from that ideal. The explicit

commutator in (6.4) also indicates that the imaginary part of the weak value in-

volves the operator Â in its role as a generator for unitary group transformations

as suggested by Aharonov and Botero [31], in contrast to the real part (6.3) that

involves the operator Â in its role as a measurable observable.

Before we provide these interpretations, however, we wish to make make it

clear how the generalized weak value expressions (6.3) and (6.4) and their in-

terpretations arise within a traditional von Neumann detector. Hence, we will

first provide an exact treatment of a von Neumann measurement in Section 6.1

using the formalism of quantum operations (e.g. [22, 25, 27]). In addition to

augmenting existing derivations in the literature that are concerned largely with

understanding the detector response (e.g. [33, 34, 37, 42, 43, 178–182, 184, 185]),

our exact approach serves to connect the standard treatment of weak values to

our more general contextual values analysis from Chapter 3 that produces the

real part [68, 70, 71] more explicitly. Our exact solutions will also show that the

generalized form of the weak value is a universal feature in von Neumann measure-

ments, extending its validity well beyond the weak measurement limit originally

conceived by Aharonov et al..

We will also briefly comment on the time-symmetry of the weak value in Sec-

tion 6.4 and provide several explicit examples in Section 6.5 that specialize our

exact solutions to typically investigated cases: a particular momentum weak value,

a qubit observable measurement, a Gaussian detector, and a detector composed of

arbitrary Hermite-Gauss modes. As a consequence, we will show that the Gaus-

sian detector is notable since it induces measurement disturbance that purely

decoheres the system state into the eigenbasis of Â in the Lindblad sense with

increasing measurement strength. Surprisingly, the pure decoherence allows the
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shifts in a Gaussian detector to be completely parametrized by a single complex

weak value to all orders in the coupling strength, which allows those shifts to

be completely understood using our interpretations of that weak value. For the

more general Hermite-Gauss modes, the imaginary part of the weak value must

be augmented by an additional correction, further supporting our interpretation

of it as a disturbance term.

6.1 von Neumann Measurement

The traditional approach for obtaining a complex weak value [28] for a system

observable is to post-select a weak Gaussian von Neumann measurement [11].

The real and imaginary parts of the complex weak value then appear as scaled

shifts in the conditioned expectations of conjugate detector observables to linear

order in the coupling strength. To clarify how these shifts occur and how the

weak value can be interpreted, we shall solve the von Neumann measurement

model exactly in the presence of post-selection.

6.1.1 Traditional Analysis

A von Neumann measurement [11, 28] unitarily couples an operator Â on a system

Hilbert space Hs to a momentum operator p̂ on a continuous detector Hilbert space

Hd via a time-dependent interaction Hamiltonian of the form,

ĤI(t) = g(t)Â⊗ p̂. (6.5)

The interaction profile g(t) is assumed to be a function that is only nonzero over

some interaction time interval t ∈ [0, T ]. The interaction is also assumed to

be impulsive with respect to the natural evolution of the initial joint state ρ̂ of
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the system and detector; i.e., the interaction Hamiltonian (6.5) acts as the total

Hamiltonian during the entire interaction time interval.

Solving the Schrödinger equation,

i~∂tÛ = ĤIÛ , (6.6)

with the initial condition Û0 = 1̂ produces a unitary operator,

ÛT = exp
( g
i~
Â⊗ p̂

)
, (6.7)

g =

∫ T

0

dt g(t), (6.8)

that describes the full interaction over the time interval T . The constant g acts

as an effective coupling parameter for the impulsive interaction. If the interaction

is weakly coupled then g is sufficiently small so that ÛT ≈ 1̂ and the effect of the

interaction will be approximately negligible; however, we will make no assumptions

about the weakness of the coupling a priori.

The unitary interaction (6.7) will entangle the system with the detector so that

performing a direct measurement on the detector will lead to an indirect measure-

ment being performed on the system. Specifically, we note that the position op-

erator x̂ of the detector satisfies the canonical commutation relation [x̂, p̂] = i~1̂d,

and thus will evolve in the Heisenberg picture of the interaction according to,

(1̂s ⊗ x̂)T = Û †T (1̂s ⊗ x̂)ÛT = 1̂s ⊗ x̂+ gÂ⊗ 1̂d. (6.9)

As a result, measuring the mean of the detector position after the interaction

〈x〉T = Tr
(
(1̂s ⊗ x̂)T ρ̂

)
will produce,

〈x〉T = 〈x〉0 + g 〈A〉0 . (6.10)
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Hence, the mean of the detector position will be shifted from its initial mean by

the mean of the system observable Â in the initial reduced system state, linearly

scaled by the coupling strength g. For this reason we say that directly measuring

the average of the detector position x̂ results in an indirect measurement of the

average of the system observable Â.

The detector momentum p̂, on the other hand, does not evolve in the Heisen-

berg picture since [ÛT , 1̂s ⊗ p̂] = 0. Hence, we expect that measuring the average

detector momentum will provide no information about the system observable Â.

As discussed in the introduction, however, when one conditions such a von

Neumann measurement of the detector upon the outcome of a second measurement

made only upon the system, then the conditioned average of both the position and

the momentum of the detector can experience a shift. To see why this is so, we will

find it useful to switch to the language of quantum operations (e.g. [22, 25, 27])

in order to dissect the measurement in more detail.

6.1.2 Quantum Operations

Unconditioned Measurement

As before, we will assume an impulsive interaction in what follows so that any

natural time evolution in the joint system and detector state will be negligible on

the time scale of the measurement. (For considerations of the detector dynamics,

see [34].) We will also assume for simplicity of discussion that the initial joint

state of the system and detector before the interaction is a product state and that

the detector state is pure,

ρ̂ = ρ̂i ⊗ |ψ〉 〈ψ| , (6.11)
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though we will be able to relax this assumption in our final results. Conceptu-

ally, this assumption states that a typical detector will be initially well-calibrated

and uncorrelated with the unknown system state that is being probed via the

interaction.

Evolving the initial state with the interaction unitary ÛT (6.7) will entangle

the system with the detector. Hence, subsequently measuring a particular detec-

tor position will be equivalent to performing an operation Mx upon the reduced

system state, as illustrated in Figure 6.1,

Mx(ρ̂i) = TrD

(
(1̂s ⊗ |x〉 〈x|)ÛT ρ̂Û †T

)
= M̂xρ̂iM̂

†
x, (6.12)

M̂x = 〈x| ÛT |ψ〉 . (6.13)

where TrD (·) is the partial trace over the detector Hilbert space, and M̂x is the

Kraus operator associated with the operation Mx. Furthermore, since 〈x|ψ〉 =

ψ(x) is the initial detector position wave-function we find,

M̂x =

∫
da exp(−ga∂x)ψ(x) |a〉 〈a| =

∫
daψ(x− ga) |a〉 〈a| , (6.14)

or, more compactly, M̂x = ψ(x− gÂ).

If we do not perform a subsequent post-selection on the system state, then we

trace out the system to find the total probability density for detecting the position

x,

p(x) = TrS (Mx(ρ̂i)) = TrS

(
Êxρ̂i

)
, (6.15)

Êx = M̂ †
xM̂x = 〈ψ| Û †T (1̂s ⊗ |x〉 〈x|)ÛT |ψ〉 , (6.16)

where TrS (·) is the partial trace over the system Hilbert space. The probability

operator Êx is a positive system operator that encodes the probability of mea-

suring a particular detector position x, and can also be written in terms of the
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Figure 6.1: (color online) Schematic for a von Neumann measurement. An ini-
tially prepared system state ρ̂i and detector state |ψ〉 〈ψ| become entangled with
the von Neumann unitary interaction ÛT (6.7) over a time interval T . Measuring
a particular detector position x after the interaction updates the detector state to
|x〉 〈x| and also updates the system state to Mx(ρ̂i), where Mx (6.12) is an effec-
tive measurement operation that encodes the entanglement with and subsequent
measurement of the detector.

initial detector position wave-function as Êx = |ψ(x− gÂ)|2. To conserve proba-

bility it satisfies the condition,
∫
dx Êx = 1̂s, making the operators Êx a positive

operator-valued measure (POVM) on the system space.

Consequently, averaging the position of the detector will effectively average a

system observable with the initial system state,

〈x〉T =

∫ ∞
−∞

dx x p(x) = TrS

(
Ôρ̂i

)
, (6.17)

Ô =

∫ ∞
−∞

dx xÊx = 〈ψ| Û †T (1̂s ⊗ x̂)ÛT |ψ〉 = 〈x〉0 1̂s + gÂ, (6.18)

where we see the Heisenberg evolved position operator (6.9) naturally appear.

Since the probability operators Êx are diagonal in the basis of Â, then the

effective system operator Ô will also be diagonal in the same basis. Hence, by

modifying the values that we assign to the position measurements, we can arrange

an indirect measurement of any system observable spanned by {Êx} in the basis
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of Â, including Â itself,

Â =

∫ ∞
−∞

dx

(
x− 〈x〉0

g

)
Êx, (6.19)

The chosen set of values (x − 〈x〉0)/g are contextual values for Â, which, as dis-

cussed in Chapters 2 and 3 can be thought of as a generalized spectrum that

relates Â to the specific POVM {Êx} associated with the measurement context

{Mx} [68, 70, 71]. They are not the only values that we could assign to the po-

sition measurement in order to obtain the equality (6.19) (see, e.g., (3.57)), but

they are arguably the simplest to obtain and compute, as well as the most fre-

quently used in the literature. It is in this precise sense that we can say that the

von Neumann coupling leads to an indirect measurement of the average of Â in

the absence of post-selection.

The measurement of Â comes at a cost, however, since the system state is

necessarily disturbed by the operations Mx in order to obtain the probability op-

erators Êx. The state may even be disturbed more than is strictly required to

make the measurement of Â, which can be seen by rewriting the measurement

operators in polar form, M̂x = Ûx|Êx|1/2, with the positive root of the probabil-

ity operator |Êx|1/2 and an additional unitary operator Ûx. This decomposition

implies that Mx splits into an effective composition of two distinct operations,

Mx(ρ̂i) = Ux(Ex(ρ̂i)), (6.20a)

Ex(ρ̂i) = |Êx|1/2ρ̂i|Êx|1/2, (6.20b)

Ux(ρ̂
′
i) = Ûxρ̂

′
iÛ
†
x. (6.20c)

We can interpret the operation Ex that involves only the roots of the probability

operator |Êx|1/2 as the pure measurement operation producing Êx. That is, it

represents the minimum necessary disturbance that one must make to the initial
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state in order to extract a measurable probability. The second operation Ux

unitarily disturbs the initial state, but does not contribute to Êx. Since only Êx

can be used to infer information about Â through the identity (6.19), we conclude

that the disturbance from Ux is superfluous.

To identify the condition for eliminating Ux, we can rewrite the Kraus operator

(6.13) using the polar form of the initial detector position wave-function ψ(x) =

exp(iψs(x))ψr(x),

M̂x = exp(iψs(x− gÂ))ψr(x− gÂ). (6.21)

The phase factor becomes the unitary operator Ûx = exp(iψs(x − gÂ)) for Ux,

while the magnitude becomes the required positive root |Êx|1/2 = ψr(x − gÂ)

for Ex. Hence, to eliminate the superfluous operation Ux from a von Neumann

measurement with coupling Hamiltonian (6.5), one must use a purely real initial

detector wave-function in position.

For contrast, measuring only a particular detector momentum p will be equiv-

alent to performing a different operation Np upon the reduced system state,

Np(ρ̂i) = TrD

(
(1̂s ⊗ |p〉 〈p|)ÛT ρ̂Û †T

)
= N̂pρ̂iN̂

†
p , (6.22)

N̂p = 〈p| ÛT |ψ〉 = exp
(gp
i~
Â
)
〈p|ψ〉 . (6.23)

The Kraus operator N̂p has a purely unitary factor containing Â that will disturb

the system, regardless of the form of the initial momentum wave-function 〈p|ψ〉.

Moreover, the probability operator associated with the momentum measurement

has the form,

F̂p = N̂ †pN̂p = |〈p|ψ〉|21̂s, (6.24)

which can only be used to measure the identity 1̂s.
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For completeness we also briefly note that the conjugate Kraus operators M̂x

and N̂p are related through a Fourier transform,

N̂p =
1√
2π~

∫ ∞
−∞

dx e−ipx/~M̂x, (6.25a)

M̂x =
1√
2π~

∫ ∞
−∞

dp eipx/~N̂p, (6.25b)

and that both detector probability operators can be obtained as marginals of a

Wigner quasi-probability operator on the system Hilbert space,

Ŵx,p =
1

π~

∫ ∞
−∞

dy e2ipy/~M̂ †
x+yM̂x−y, (6.26a)

Êx =

∫ ∞
−∞

dp Ŵx,p, (6.26b)

F̂p =

∫ ∞
−∞

dx Ŵx,p. (6.26c)

In the absence of interaction, then the Wigner quasi-probability operator reduces

to the Wigner quasi-probability distribution W (x, p) for the initial detector state,

Ŵx,p
g=0−−→ W (x, p)1̂s.

Conditioned Measurement

To post-select the system, an experimenter must perform a second measurement

after the von Neumann measurement and filter the two-measurement event space

based on the outcomes for the second measurement. In other words, the experi-

menter keeps only those pairs of outcomes for which the second outcome satisfies

some constraint. The remaining measurement pairs can then be averaged to pro-

duce conditioned averages of the first measurement.

If we represent the second measurement as a set of probability operators {P̂f}

indexed by some parameter f that can be derived analogously to (6.16) from a

set of operations {Pf} as illustrated in Figure 6.2, then the total joint probability
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Figure 6.2: (color online) Schematic for a sequence of two indirect measurements.
After the von Neumann interaction and measurement of x illustrated in Figure 6.1
that produces the effective measurement operation Mx upon the initial system
state, a second detector interacts impulsively with the system for a time interval
T2 − T . The second detector is then measured to have a particular outcome f ,
which updates the system state to Pf (Mx(ρ̂i)), where Pf is another measurement
operation. Taking the trace of the final system state will then produce the joint
probability densities (6.27).

densities for the ordered sequences of measurement outcomes (x, f) and (p, f) will

be,

p(x, f) = TrS

(
P̂fMx(ρ̂i)

)
= TrS

(
Êx,f ρ̂i

)
, (6.27a)

p(p, f) = TrS

(
P̂fNp(ρ̂i)

)
= TrS

(
F̂p,f ρ̂i

)
, (6.27b)

where the joint probability operators,

Êx,f = M̂ †
xP̂fM̂x, (6.28a)

F̂p,f = N̂ †p P̂fN̂p. (6.28b)

are not simple products of the post-selection P̂f and the probability operators

(6.16) or (6.24). Those operators can be recovered, however, by marginalizing

over the index f , since the post-selection probability operators must satisfy a

POVM condition
∑

f P̂f = 1̂s.
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The joint probabilities (6.27) will contain information not only about the first

measurement and the initial system state, but also about the second measurement

and any disturbance to the initial state that occurred due to the first measure-

ment. In particular, the joint probability operators (6.28) can no longer satisfy

the identity (6.19) due to the second measurement, so averaging the probabilities

(6.27) must reveal more information about the measurement process than can be

obtained solely from the operator Â, the initial state ρ̂i, and the post-selection

P̂f . As a poignant example, the unitary disturbance Ux in (6.20) that did not

contribute to the operator identity (6.19) will contribute to the joint probability

operators, Êx,f = |Êx|1/2Û †xP̂f Ûx|Êx|1/2.

The total probability for obtaining the post-selection outcome f can be ob-

tained by marginalizing over either x or p in the joint probabilities,

p(f) =

∫ ∞
−∞

dx p(x, f) =

∫ ∞
−∞

dp p(p, f) = TrS

(
P̂fE(ρ̂i)

)
, (6.29)

E(ρ̂i) = TrD

(
ÛT (ρ̂i ⊗ |ψ〉 〈ψ|)Û †T

)
, (6.30)

where the operation E is the total non-selective measurement that has been per-

formed on ρ̂i. Since E is not the identity operation, it represents the total dis-

turbance intrinsic to the measurement process. It includes unitary evolution of

the reduced system state due to the interaction Hamiltonian (6.5), as well as

decoherence stemming from entanglement with the measured detector.

By experimentally filtering the event pairs to keep only a particular outcome

f of the second measurement, an experimenter can obtain the conditional proba-
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bilities,

p(x|f) =
p(x, f)

p(f)
=

TrS

(
P̂fMx(ρ̂i)

)
TrS

(
P̂fE(ρ̂i)

) , (6.31a)

p(p|f) =
p(p, f)

p(f)
=

TrS

(
P̂fMp(ρ̂i)

)
TrS

(
P̂fE(ρ̂i)

) , (6.31b)

which can then be averaged to find the exact conditioned averages for the detector

position and momentum,

〈x〉f T =

∫ ∞
−∞

dx x p(x|f) =
Tr
(

(P̂f ⊗ x̂) ρ̂T

)
Tr
(

(P̂f ⊗ 1̂d) ρ̂T

) , (6.32a)

〈p〉f T =

∫ ∞
−∞

dp p p(p|f) =
Tr
(

(P̂f ⊗ p̂) ρ̂T
)

Tr
(

(P̂f ⊗ 1̂d) ρ̂T

) , (6.32b)

where we have written out the operations explicitly and where ρ̂T = ÛT (ρ̂i ⊗

|ψ〉 〈ψ|)Û †T is the post-interaction joint state. It is worth noting at this point

that we can relax the assumption (6.11) made about the initial state in the exact

expressions (6.32). Similarly, if different contextual values are used to average the

conditional probabilities in (6.32), then corresponding detector observables with

the same spectra will appear in (6.32) in place of x̂ or p̂; for example, averaging

the values α(x) = (x− 〈x〉0)/g used in (6.19) will replace the detector observable

x̂ with α̂ =
∫∞
−∞ dxα(x) |x〉 〈x| .

6.2 Joint Weak Values

As written, Eqs. (6.32) show that the joint observables P̂f ⊗ x̂ and P̂f ⊗ p̂ are av-

eraged with respect to the final joint state ρ̂T . However, we can also express these

averages in terms of the initial joint state by commuting the detector observables
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symmetrically past the evolution operators ÛT using the canonical commutation

relations as in (6.9),

〈x〉f T = Re 〈x〉w + gRe 〈A〉w , (6.33a)

〈p〉f T = Re 〈p〉w . (6.33b)

The averages are exactly characterized by the real parts of three generalized weak

values [45, 68, 70, 71, 73] that are defined in the joint Hilbert space of the system

and detector,

〈A〉w =
Tr
(
P̂T (Â⊗ 1̂d) ρ̂

)
Tr
(
P̂T ρ̂

) , (6.34a)

〈x〉w =
Tr
(
P̂T (1̂s ⊗ x̂) ρ̂

)
Tr
(
P̂T ρ̂

) , (6.34b)

〈p〉w =
Tr
(
P̂T (1̂s ⊗ p̂) ρ̂

)
Tr
(
P̂T ρ̂

) . (6.34c)

The pre-selection for each weak value is equal to the initial joint state ρ̂, while

the post-selection is equal to the Heisenberg-evolved joint post-selection operator,

P̂T = Û †T (P̂f⊗ 1̂d)ÛT . Higher-order detector moments are provided in Appendix D

for completeness, and all have similar expansions into joint weak values.

The form of the equations (6.34) clearly illustrates how the post-selection will

affect the measurement. If the post-selection is the identity operator, P̂f = 1̂s,

then the unitary operators ÛT causing the total disturbance of the initial state will

cancel, leaving the averages in the initial states that were previously obtained,

〈x〉T = 〈x〉0 + g 〈A〉0 , (6.35a)

〈p〉T = 〈p〉0 . (6.35b)
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In this sense, commuting the detector operators x̂ and p̂ in (6.32) through the

unitary operators to arrive at (6.33) is equivalent to evolving them in the Heisen-

berg picture back from the time of measurement T to the initial time 0 in order to

compare them with the initial states. However, the presence of the post-selection

operator P̂f will now generally spoil the cancellation of the unitary operators that

is implicit in the Heisenberg picture, leading to corrections from the disturbance

between the pre- and post-selection.

Importantly, these relations hold for any coupling strength g, any (possibly

entangled) initial joint state ρ̂, and any generalized post-selection P̂f ; that is, all

von Neumann detector (conditioned) averages are exactly described by generalized

weak values. This important result seems to have been missed in the existing

literature due to the fact that the generalized weak values (6.34) cannot be written

in a form with projective pre- and post-selections as defined originally by AAV

[28]. Moreover, they explicitly include the detector information, so are not solely

system quantities.

6.2.1 Reduced State Expressions

If we prepare a product initial state ρ̂ = ρ̂i⊗ ρ̂d, where ρ̂i (ρ̂d) is the initial state of

the system (detector), then we can exploit the product form of the observables to

further simplify Eqs. (6.34). Notably, since [Â, ÛT ] = 0 we can express Eq. (6.34a)

as a weak value only on the system Hilbert space,

〈A〉w =
TrS

(
P̂f ÂE(ρ̂i)

)
TrS

(
P̂f E(ρ̂i)

) , (6.36)

where the pre-selection state,

E(ρ̂i) = TrD

(
ÛT (ρ̂i ⊗ ρ̂d)Û †T

)
, (6.37)
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is the reduced system state after the interaction, which has the same form as a

non-selective measurement (6.30). All detector information has been absorbed

into an effective preparation of the reduced system state E(ρ̂i).

To directly compare the joint weak values Eqs. (6.34b) and (6.34c) with (6.36),

we also express them within the system Hilbert space,

Re 〈x〉w =
TrS

(
P̂f X(ρ̂i)

)
TrS

(
P̂fE(ρ̂i)

) , (6.38a)

Re 〈p〉w =
TrS

(
P̂f P(ρ̂i)

)
TrS

(
P̂fE(ρ̂i)

) , (6.38b)

by introducing the operations,

X(ρ̂i) = TrD

(
ÛT

(
ρ̂i ⊗

(
x̂ρ̂d + ρ̂dx̂

2

))
Û †T

)
, (6.39a)

P(ρ̂i) = TrD

(
ÛT

(
ρ̂i ⊗

(
p̂ρ̂d + ρ̂dp̂

2

))
Û †T

)
, (6.39b)

that act upon the initial system state.

The Weyl-ordered operator products with the initial detector state that appear

motivate us to define the Wigner distribution of the detector and its Fourier

transform,

Wd(x, p) =
1

2π~

∫
dy 〈x− y/2| ρ̂d |x+ y/2〉 eipy/~, (6.40a)

W̃d(x, y) =

∫
dpWd(x, p) e

−ipy/~ = 〈x− y/2| ρ̂d |x+ y/2〉 . (6.40b)

With this distribution, we can express the exact reduced system state (6.37) and
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the operations (6.39) in a useful and compact form,

E(ρ̂i) =

∫
dx W̃d(x, g ad∗[Â])(ρ̂i), (6.41a)

X(ρ̂i) =

∫
dx x W̃d(x, g ad∗[Â])(ρ̂i), (6.41b)

P(ρ̂i) = i~
[
∂z

∫
dx W̃d(x, z)

]
z→g ad∗[Â]

(ρ̂i) = i~ ∂g ad∗[Â] E(ρ̂i). (6.41c)

Notice that the left adjoint action (A.11) of Â, ad∗[Â](B̂) = ÂB̂ − B̂Â, discussed

in Appendix A.3 naturally appears, and that Eq. (6.41c) allows one to simply

obtain the momentum response once the functional form of reduced system state

(6.41a) is known. Derivations of these expressions, as well as generalizations to

higher-order detector moments are provided in Appendix D. We will return to

examples of these general expressions in Section 6.5.4.

6.3 Linear Response Regime

To see how the operations E, X, and P defined in (6.37) and (6.39) depend on the

coupling strength g, we can also expand them perturbatively,

E(ρ̂i) =
∑
n=0

1

n!

(g
~

)n
〈pn〉0 (ad∗[−iÂ])n(ρ̂i), (6.42a)

X(ρ̂i) =
∑
n=0

1

n!

(g
~

)n 〈{pn, x}〉0
2

(ad∗[−iÂ])n(ρ̂i), (6.42b)

P(ρ̂i) =
∑
n=0

1

n!

(g
~

)n 〈
pn+1

〉
0

(ad∗[−iÂ])n(ρ̂i), (6.42c)

where {pn, x} = pnx+ xpn is the anti-commutator. Again, the left adjoint action

(A.11) of Â as a Lie algebraic element explicitly appears and describes how Â

disturbs the initial state due to the interaction that measures it.

The initial detector state plays a critical role in (6.42) by determining the
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various moments, 〈pn〉0, 〈pn+1〉0 and 〈{pn, x}/2〉0 that appear in the series expan-

sions. Notably, if we make the initial detector wave-function purely real so that it

minimally disturbs the system state then all moments containing odd powers of

p̂ will vanish. We conclude that those moments of the disturbance operations are

superfluous for obtaining the measurable probabilities that allow the measurement

of Â, while the moments with even powers of p̂ are necessary.

After expanding the exact conditioned averages (6.33) to first order in g, we

obtain the linear response of the conditioned detector means due to the interaction,

〈x〉f T → 〈x〉0 +
g

~
〈{p, x}〉0

2

TrS

(
P̂fad∗[−iÂ](ρ̂i)

)
TrS

(
P̂f ρ̂i

) + g
TrS

(
P̂f{Â, ρ̂i}

)
2TrS

(
P̂f ρ̂i

) , (6.43a)

〈p〉f T → 〈p〉0 +
g

~
〈
p2
〉

0

TrS

(
P̂fad∗[−iÂ](ρ̂i)

)
TrS

(
P̂f ρ̂i

) . (6.43b)

Measurements for which this linear response is a good approximation are known

as (AAV) weak measurements.

By introducing the generalized weak value with no measurement disturbance

as a complex parameter,

Aw =
TrS

(
P̂f Âρ̂i

)
TrS

(
P̂f ρ̂i

) , (6.44)

we thus have the following approximate replacements to linear order in g,

gRe 〈A〉w ≈ gReAw, (6.45a)

Re 〈x〉w ≈ 〈x〉0 +
g

~
〈{p, x}〉0

2
(2ImAw), (6.45b)

Re 〈p〉w ≈ 〈p〉0 +
g

~
〈
p2
〉

0
(2ImAw), (6.45c)
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in terms of not only its real part in the system weak value, but also twice its

imaginary part in the detector weak values. The linear response formulas (6.43)

acquire the compact form,

〈x〉f T ≈ 〈x〉0 +
g

~
〈{p, x}〉0

2
(2ImAw) + gReAw, (6.46a)

〈p〉f T ≈ 〈p〉0 +
g

~
〈
p2
〉

0
(2ImAw). (6.46b)

If the initial detector state ρ̂d = |ψ〉 〈ψ| consists of a purely real position wave-

function 〈x|ψ〉 = ψ(x), so that the measurement is minimally disturbing, then

〈{p, x}/2〉0 will vanish, leaving only ReAw in 〈x〉f T as a linear approximation

to the full conditioned average Re 〈A〉w defined in (6.36). However, the term

proportional to 2ImAw will not vanish in 〈p〉f T to linear order in g, making it an

element of measurement disturbance that persists even for minimally disturbing

weak measurements.

The linear response formulas (6.46) for the von Neumann measurement have

also been obtained and discussed in the literature with varying degrees of gener-

ality and rigor (e.g. [28, 29, 32–34, 37, 42, 43, 178, 180–182, 184, 185]). However,

our derivation has a conceptual advantage in that we see explicitly how the ori-

gins of the real and imaginary parts of the weak value differ with respect to the

measurement of Â. We are therefore in a position to give concrete interpretations

for each part.

The real part (6.3) of the complex weak value parameter ReAw stems directly

from the part of the conditioned shift of the detector pointer that corresponds to

the measurement of Â and does not contain any further perturbation induced by

the measurement coupling that would be indicated by factors of ad∗[−iÂ]. As a

result, it can be interpreted as an idealized limit point for the average of Â in

the initial state ρ̂i that has been conditioned on the post-selection P̂f without any

appreciable intermediate measurement disturbance. We expect this interpretation
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due to our analysis in Section 3.5 that shows ReAw appears naturally as a limit

point even for minimally disturbing measurements that are not of von Neumann

type.

The imaginary part (6.4) of the complex weak value parameter ImAw, on the

other hand, stems directly from the disturbance of the measurement and explicitly

contains ad∗[−iÂ], which is the action of Â as a generator for unitary group

evolution due to the specific Hamiltonian (6.5). The factor 2ImAw appears in

(6.46) along with information about the initial detector momentum that is being

coupled to Â in the Hamiltonian (6.5), as well as factors of ~, in stark contrast to

the real part.

The significance of 2ImAw becomes more clear once we identity the left adjoint

action of Â that appears in its numerator as a directional derivative,

δA(·) = ad∗[−iÂ](·). (6.47)

That is, δA(ρ̂i) indicates the rate of change of the initial state ρ̂i along a flow in

state-space generated by Â.

As mentioned in Appendix A.3, this directional derivative should be familiar

from the Heisenberg equation of motion (A.12), or from the equivalent Liouville-

Schrödinger equation written in the form ∂tρ̂ = [Ĥ, ρ̂]/i~ = δΩ(ρ̂), where the

scaled Hamiltonian Ω̂ = Ĥ/~ is a characteristic frequency operator. The in-

tegration of this equation is an adjoint group operation in exponential form

ρ̂(t) = exp(tδΩ)(ρ̂(0)) = exp(−itΩ̂)ρ̂(0) exp(itΩ̂) that specifies a flow in state

space, which is a collection of curves that is parametrized both by a time param-

eter t and by the initial condition ρ̂(0). Specifying the initial condition ρ̂(0) = ρ̂i,

picks out the specific curve from the flow that contains ρ̂i. The directional deriva-

tive of the initial state along that specific curve is then defined in the standard

way, ∂tρ̂(t)|t=0 = δΩ(ρ̂i).
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The fact that the quantum state space is always a continuous manifold of states

built fundamentally from a Lie group, as discussed more generally in Appendix A,

allows such a flow to be defined using any Hermitian operator, such as Â, as a

generator. Analogously to time evolution, such a flow has the form of a unitary

operation, ρ̂(ε) = exp(εδA)(ρ̂(0)), where the real parameter ε for the flow has units

inverse to Â. Therefore, taking the directional derivative of ρ̂i along the specific

curve of this flow that passes through ρ̂i will produce (6.47). For an explicit

example that we will detail in Section 6.5.2, the state-space of a qubit can be

parametrized as the continuous volume of points inside the unit Bloch sphere; the

derivative (6.47) produces the vector field illustrated in Figure 6.3 tangent to the

flow corresponding to Rabi oscillations of the qubit.

With this intuition in mind, we define the post-selection probability for mea-

suring P̂f given an initial state ρ̂i(ε) = exp(εδA)(ρ̂i) that is changing along the

flow generated by Â,

pf (ε) = TrS

(
P̂f ρ̂i(ε)

)
. (6.48)

The logarithmic directional derivative of this post-selection probability then pro-

duces the factor 2ImAw that appears in (6.46),

2ImAw = ∂ε ln pf (ε)
∣∣
ε=0
. (6.49)

Thus, the imaginary part of the complex weak value parameter is half the

logarithmic directional derivative of the post-selection probability along the nat-

ural group flow generated by Â. It does not provide any information about the

measurement of Â as an observable, but rather indicates an instantaneous rate

of multiplicative change to the post-selection probability due to disturbance of the

initial state caused by Â in its role as a generator for unitary transformations.
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Specifically, for small ε we have the approximate relation,

pf (ε)

pf (0)
≈ 1 + (2ImAw)ε. (6.50)

6.4 Time Symmetry

As noted in [32, 97], a quantum system that has been pre- and post-selected

exhibits time symmetry. We can make the time symmetry more apparent in our

operational treatment by introducing the retrodictive state,

ρ̂f =
P̂f

TrS

(
P̂f

) , (6.51)

associated with the post-selection (see, e.g., [206, 207]) and rewriting our main

results in the time-reversed retrodictive picture.

After cancelling normalization factors, the joint weak values (6.36) and (6.38)

that characterize the response (6.33) for a system retrodictively prepared in the

final state ρ̂f and then conditioned on the pre-selection measurement producing

the initial system state ρ̂i have the equivalent form,

〈A〉w =
TrS

(
E∗(ρ̂f )Âρ̂i

)
TrS (E∗(ρ̂f )ρ̂i)

, (6.52a)

Re 〈x〉w =
TrS (X∗(ρ̂f )ρ̂i)

TrS (E∗(ρ̂f )ρ̂i)
, (6.52b)

Re 〈p〉w =
TrS (P∗(ρ̂f )ρ̂i)

TrS (E∗(ρ̂f )ρ̂i)
, (6.52c)

where the retrodictive operations E∗, X∗, and P∗ are the adjoints with respect to



179

the trace of the predictive operations in (6.37) and (6.39),

E∗(ρ̂f ) = TrD

(
Û †T (ρ̂f ⊗ 1̂d)ÛT (1̂s ⊗ ρ̂d)

)
, (6.53a)

X∗(ρ̂f ) = TrD

(
Û †T (ρ̂f ⊗ 1̂d)ÛT

(
1̂s ⊗

(
x̂ρ̂d + ρ̂dx̂

2

)))
, (6.53b)

P∗(ρ̂f ) = TrD

(
Û †T (ρ̂f ⊗ 1̂d)ÛT

(
1̂s ⊗

(
p̂ρ̂d + ρ̂dp̂

2

)))
. (6.53c)

Notably, the retrodictive state propagates backwards in time. As discussed in

[207], it describes the measurement apparatus outcome for the post-selection,

and not the system itself; in particular, the retrodictive state does not equal the

predictive state after the post-selection unless the post-selection is projective. One

can thus envision each state as corresponding to a boundary condition specified

by a measurement apparatus.

After expanding the retrodictive operations perturbatively as in (6.42),

E∗(ρ̂f ) =
∑
n=0

1

n!

(g
~

)n
〈pn〉0 (ad[−iÂ])n(ρ̂f ), (6.54a)

X∗(ρ̂f ) =
∑
n=0

1

n!

(g
~

)n 〈{pn, x}〉0
2

(ad[−iÂ])n(ρ̂f ), (6.54b)

P∗(ρ̂f ) =
∑
n=0

1

n!

(g
~

)n 〈
pn+1

〉
0

(ad[−iÂ])n(ρ̂f ), (6.54c)

where ad[−iÂ](·) = −ad∗[−iÂ](·) = [·,−iÂ] is the right adjoint action of Â defined

in (A.11) in Appendix A.3, then the linear response of the detector (6.46) can be

written in terms of the retrodictive forms of the real and imaginary parts of the

complex weak value parameter,

ReAw =
TrS

(
{ρ̂f , Â}ρ̂i

)
2TrS (ρ̂f ρ̂i)

, (6.55)

2ImAw =
TrS

(
[ρ̂f ,−iÂ]ρ̂i

)
TrS (ρ̂f ρ̂i)

, (6.56)
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which can be compared with (6.3), and (6.4).

6.5 Examples

6.5.1 Bohmian Mechanics

To make the preceding abstract discussion of the weak value more concrete, let us

consider a special case that has been recently discussed by Leavens [202], Wiseman

[203], and Hiley [204], where the operator Â = p̂ being measured is the momen-

tum operator of the system particle. Since the wave-number operator k̂ = −p̂/~

generates a flow that is parametrized by the position x, then we expect from the

discussion surrounding (6.49) that the imaginary part of a momentum weak value

will give information about how the post-selection probability will change along

changes in position.

If we restrict our initial system state to be a pure state ρ̂i = |φ〉 〈φ| , and post-

select the measurement of the momentum on a particular position P̂f = |x〉 〈x| ,

then the detector will have the linear response relations (6.46) with the complex

weak value given by,

pw =
〈x| p̂ |φ〉
〈x|φ〉

=
−i~∂xφ(x)

φ(x)
. (6.57)

We can split this value naturally into its real and imaginary parts by considering

the polar decomposition of the initial system state φ(x) = r(x) exp(iS(x)),

pw = ~∂xS(x)− i~∂x ln r(x). (6.58)

The real part of the weak value Re pw = ~∂xS(x) is the phase gradient, or

Bohmian momentum for the initial state, which we can now interpret opera-

tionally as the average momentum conditioned on the subsequent measurement of
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a particular x in the ideal limit of no measurement disturbance. Indeed, Hiley

has recently identified the Bohmian momentum as the local momentum compo-

nent of the energy-momentum tensor [91]. The connection between the real part

of a weak value and the Bohmian momentum that was pointed out in [202, 203]

has recently allowed Kocsis et al. [58] to experimentally reconstruct the averaged

Bohmian trajectories in an optical two-slit interference experiment using such a

von Neumann measurement.

The imaginary part of the weak value, Im pw = −~∂x ln r(x), on the other

hand, is the logarithmic gradient of the root of the probability density ρ(x) =

|φ(x)|2 = r2(x) for the particle at the point x. Written in the form,

2Im pw = −~∂x ln ρ(x), (6.59)

it describes the instantanous exponential rate of positional change of the proba-

bility density with respect to the particular post-selection point x, as expected.

This quantity, scaled by an inverse mass 1/m, was introduced under the name “os-

motic velocity” in the context of a stochastic interpretation of quantum mechanics

developed by Nelson [208], where it produced a diffusion term in the stochastic

equations of motion for a classical point particle with diffusion coefficient ~/2m.

Nelson’s interpretation was carefully contrasted with a stochastic interpretation

for the Bohmian pilot wave by Bohm and Hiley [209], and the connection of the

osmotic velocity with a weak value was recently emphasized by Hiley [204].

Hence, the imaginary part of the momentum weak value does not provide

information about a measurement of the momentum in the initial state. Instead,

it indicates the logarithmic directional derivative of the probability density for

measuring x along the flow generated by p̂. The scaled derivative −~∂x appears

since p̂ = −~k̂ and k̂ generates flow along the position x.
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6.5.2 Qubit Observable

To make the full von Neumann measurement process more concrete, let us also

consider a simple example where Â operates on the two-dimensional Hilbert space

of a qubit. (See also [33, 34, 37, 42, 43, 178–182, 184, 185].) We can in such a

case simplify the perturbative expansions (6.42) using the following identities,

Â = Aσ̂3, (6.60a)

ρ̂i =
1

2

(
1̂s +

∑
k

rkσ̂k

)
, (6.60b)

[σ̂j, σ̂k] = 2iεjklσ̂l, (6.60c)

{σ̂j, σ̂k} = 2δjk1̂s, (6.60d)

where {σ̂k}3
k=1 are the usual Pauli operators, the components of the initial system

state {rk}3
k=1 are real and satisfy the inequality 0 ≤

∑
k r

2
k ≤ 1, εjkl is the com-

pletely antisymmetric Levi-Civita pseudotensor, and δjk is the Kronecker delta.

We have defined σ̂3 to be diagonal in the eigenbasis of Â and have rescaled the spec-

trum of Â for simplicity to zero out its maximally mixed mean TrS

(
Â1̂s/2

)
= 0.

As a result, 〈A〉0 = Ar3.

It follows that for positive integer n the repeated actions of Â on the various

qubit operators have the forms,

ad∗[Â]n(1̂s) = 0, (6.61a)

ad∗[Â]2n−1(σ̂1) = iσ̂2(2A)2n−1, (6.61b)

ad∗[Â]2n(σ̂1) = σ̂1(2A)2n, (6.61c)

ad∗[Â]2n−1(σ̂2) = −iσ̂1(2A)2n−1, (6.61d)

ad∗[Â]2n(σ̂2) = σ̂2(2A)2n, (6.61e)

ad∗[Â]n(σ̂3) = 0, (6.61f)
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which collectively imply that,

ad∗[Â]2n−1(ρ̂i) =
i

2
(2A)2n−1 (r1σ̂2 − r2σ̂1) , (6.62a)

ad∗[Â]2n(ρ̂i) =
1

2
(2A)2n (r1σ̂1 + r2σ̂2) , (6.62b)

and hence that the nonselective measurement operation has the exact form,

E(ρ̂i) = ρ̂i +
c(g)r1 − s(g)r2

2
σ̂1 +

c(g)r2 + s(g)r1

2
σ̂2, (6.63a)

c(g) =
∞∑
n=1

(−1)n

(2n)!

(
2Ag

~

)2n 〈
p2n
〉

0
, (6.63b)

s(g) =
∞∑
n=1

(−1)n+1

(2n− 1)!

(
2Ag

~

)2n−1 〈
p2n−1

〉
0
. (6.63c)

The correction term can be interpreted as a Rabi oscillation of the qubit that has

been perturbed by the coupling to the detector. Indeed, if the detector operator

p̂ were replaced with a constant p, then the interaction Hamiltonian (6.5) would

constitute an evolution term for the qubit that would induce Rabi oscillations

around the σ̂3 axis of the Bloch sphere, which would be the natural flow in state

space generated by the action of Â. With the substitution p̂ → p then 〈pn〉0 →

pn, so c(g) → cos(2gAp/~) − 1 and s(g) → sin(2gAp/~), which restores the

unperturbed Rabi oscillations.

Similarly, we find that the averaging operations for the detector position and

momentum (6.39) have the exact forms,

X(ρ̂i) = 〈x〉0 ρ̂i +
cx(g)r1 − sx(g)r2

2
σ̂1 +

cx(g)r2 + sx(g)r1

2
σ̂2, (6.64a)

cx(g) =
∞∑
n=1

(−1)n

(2n)!

(
2Ag

~

)2n 〈{p2n, x}〉0
2

, (6.64b)

sx(g) =
∞∑
n=1

(−1)n+1

(2n− 1)!

(
2Ag

~

)2n−1 〈{p2n−1, x}〉0
2

, (6.64c)
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and,

P(ρ̂i) = 〈p〉0 ρ̂i +
cp(g)r1 − sp(g)r2

2
σ̂1 +

cp(g)r2 + sp(g)r1

2
σ̂2, (6.65a)

cp(g) =
∞∑
n=1

(−1)n

(2n)!

(
2Ag

~

)2n 〈
p2n+1

〉
0
, (6.65b)

sp(g) =
∞∑
n=1

(−1)n+1

(2n− 1)!

(
2Ag

~

)2n−1 〈
p2n
〉

0
. (6.65c)

These operations differ from E only in how the various moments of the initial

detector distribution weight the series for the Rabi oscillation. In particular, given

the substitutions p̂→ p and x̂→ x, then 〈{pn, x}/2〉0 → pnx and 〈pn+1〉0 → pn+1,

so cx(g)→ x (cos(2gAp/~)−1), sx(g)→ x sin(2gAp/~), cp(g)→ p (cos(2gAp/~)−

1), and sp(g)→ p sin(2gAp/~). Therefore, if the detector remained uncorrelated

with the system the averaging operations would reduce to X(ρ̂i) → xE(ρ̂i) and

P(ρ̂i)→ pE(ρ̂i), which are the decoupled intial detector means scaling the Rabi-

oscillating qubit state.

Since we have assumed that Â does not have a component proportional to the

identity, the symmetric product {Â, ρ̂i}/2 = Ar31̂s/2 = 〈A〉0 (1̂s/2) for a qubit

will act effectively as an inner product that extracts the part of the initial state

proportional to Â. Therefore, the correction to 〈A〉0 in the full position response

〈x〉f T that appears in (6.33) has the simple form,

g
TrS

(
P̂fE({Â, ρ̂i}/2)

)
TrS

(
P̂fE(ρ̂i)

) =
g 〈A〉0
p̃(f)

. (6.66)

where the conditioning factor,

p̃(f) = 2TrS (ρ̂fE(ρ̂i)) (6.67)

= 2TrS (ρ̂f ρ̂i) + (c(g)r1 − s(g)r2)TrS (ρ̂fσ1) + (c(g)r2 + s(g)r1)TrS (ρ̂fσ2) ,
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is (2/TrS

(
P̂f

)
) times the total probability of obtaining the post-selection. We

have expressed p̃(f) more compactly in terms of the retrodictive state (6.51) to

show how the deviations from the initial state that are induced by Â become

effectively averaged by the post-selection state. In the absence of post-selection,

the retrodictive state will be maximally mixed ρ̂f = 1̂s/2 and p̃(f)→ 1, recovering

the unconditioned average 〈A〉0.

The correction to the detector mean position 〈x〉0 in (6.33) can be expressed

in a similar way,

TrS

(
P̂fX(ρ̂i)

)
TrS

(
P̂fE(ρ̂i)

) =
1

p̃(f)

(
2 〈x〉0 TrS (ρ̂f ρ̂i) (6.68)

+ (cx(g)r1 − sx(g)r2)TrS (ρ̂f σ̂1)

+ (cx(g)r2 + sx(g)r1)TrS (ρ̂f σ̂2)
)
,

as can the correction to the detector mean momentum 〈p〉0 in (6.33),

TrS

(
P̂fP(ρ̂i)

)
TrS

(
P̂fE(ρ̂i)

) =
1

p̃(f)

(
2 〈p〉0 TrS (ρ̂f ρ̂i) (6.69)

+ (cp(g)r1 − sp(g)r2)TrS (ρ̂f σ̂1)

+ (cp(g)r2 + sp(g)r1)TrS (ρ̂f σ̂2)
)
.

Expanding the full solution (6.33) using (6.66), (6.68), and (6.69) to linear

order in g, we find the linear response (6.46) in terms of the real and imaginary
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r1

r2

∆Σ3 HΡiL

Figure 6.3: (color online) The projection onto the plane r3 = 0 of the qubit Bloch
sphere, showing the vector field δσ3(ρ̂i) = −r2σ̂1 + r1σ̂2 for arbitrary initial states
ρ̂i = (1̂ + r1σ̂1 + r2σ̂2 + r3σ̂3)/2. The curves of the flow through this vector field
are the Rabi oscillations around the r3 axis that are generated by the unitary
action of σ̂3. The quantity 2ImAw (6.70) is the logarithmic rate of change of the
post-selection probability (6.49) along this vector field.

parts of the qubit weak value,

ReAw =
〈A〉0

2TrS (ρ̂f ρ̂i)
, (6.70a)

2ImAw =
TrS (ρ̂fδA(ρ̂i))

TrS (ρ̂f ρ̂i)
, (6.70b)

δA(ρ̂i) = A(−r2σ̂1 + r1σ̂2). (6.70c)

As expected, the real part contains information regarding the measurement

of Â as an observable in the initial state, conditioned by the disturbance-free

overlap between the predictive and retrodictive states. The imaginary part, on the

other hand, contains δA(ρ̂i), which is a tangent vector field on the Bloch sphere—

illustrated in Figure 6.3—that corresponds to an infinitesimal portion of the Rabi

oscillation being generated by Â. This tangent vector field contains only the
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components r1 and r2 from bases orthogonal to Â in the initial state ρ̂i, so 2ImAw

contains only the retrodictive averages of corrections to bases orthogonal to Â, and

thus contains no information about the measurement of Â as an observable. As

discussed in (6.49), 2ImAw is the logarithmic rate of change of the post-selection

probability along the vector field δA(ρ̂i). Scaling it by a small factor with units

inverse to A will produce a probability correction to linear order. In the absence

of post-selection, then ρ̂f → 1̂s/2, ReAw → 〈A〉0, and ImAw → 0.

6.5.3 Gaussian Detector

We can also apply our general results to the traditional case when the initial

detector state in (6.11) is a zero-mean Gaussian in position,

〈x|ψ〉 =
1

(2πσ2)1/4
e−x

2/4σ2

, (6.71)

Then the measurement operators for position detection (6.13) have the initial

Gaussian form shifted by gÂ,

M̂x =
1

(2πσ2)1/4
e−(x−gÂ)2/4σ2

, (6.72)

while the conjugate measurement operators for momentum detection (6.23) have

the initial Gaussian modified by a unitary factor containing Â,

N̂p =

(
2σ2

π~2

)1/4

e−p
2σ2/~2 egpÂ/i~. (6.73)

The Wigner quasi-probability operator (6.26a) correspondingly decouples into

a product of Gaussian distributions, with only the position shifted by the system
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operator,

Ŵx,p =
1

π~
e−(x−gÂ)2/2σ2

e−2p2σ2/~2 . (6.74)

Marginalizing the Wigner operator over momentum and position separately

produces the probability operators (6.16) and (6.24),

Êx =
1√

2πσ2
e−(x−gÂ)2/2σ2

, (6.75a)

F̂p =
σ

~

√
2

π
e−2p2σ2/~2 1̂s. (6.75b)

As anticipated, the probability operator for momentum no longer contains any

information about the system operator Â and is proportional to the identity, so

measuring the momentum provides zero information about any system operator

not proportional to the identity.

In the presence of post-selection we can also exactly compute the perturbative

expansions of the disturbance operations (6.42) using the following identities for

the Gaussian detector moments,

〈
p2n
〉

0
=

(
~
2σ

)2n

(2n− 1)!!, (6.76a)〈
p2n−1

〉
0

= 0, (6.76b)

〈{pn, x}/2〉0 = 0, (6.76c)

(2n− 1)!!

(2n)!
=

1

2n n!
, (6.76d)
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which hold for positive integer n. We find the simple results,

E(ρ̂i) = exp

(( g
2σ

)2 1

2
ad∗[−iÂ]2

)
(ρ̂i), (6.77a)

X(ρ̂i) = 0, (6.77b)

P(ρ̂i) =
g

~
~2

4σ2
ad∗[−iÂ](E(ρ̂i)). (6.77c)

Note that this independent derivation via perturbative methods has reproduced

the Gaussian case of our more general equations (6.41).

The quantity ε = (g/2σ)2 with units inverse to Â2 emerges as the natural de-

coherence parameter, which we can see more clearly by rewriting the non-selective

measurement operation in (6.77) as,

ρ̂i(ε) = E(ρ̂i) = exp
(
εL[Â]

)
(ρ̂i), (6.78a)

L[Â](ρ̂i) = Âρ̂iÂ
† − 1

2
{ρ̂i, Â†Â} =

1

2
ad∗[−iÂ]2 =

1

2
δ2
A. (6.78b)

The operation L[Â](ρ̂i) is the Lindblad operation [25, 27, 101] that produces deco-

herence in continuous dynamical systems, with Â playing the role of the Lindblad

operator that decoheres the system3. Note that for a Lie algebraic element like

−iÂ the Lindblad operation takes the intuitive form of the second-order direc-

tional derivative. Since ∂ερ̂i(ε) = L[Â](ρ̂i(ε)), the Gaussian measurement acts as

an effective Lindblad evolution that decoheres the system state with increasing ε

via the action of Â, but does not cause unitary disturbance along the natural flow

of Â .

The exact expressions for the conditioned Gaussian detector means follow from

3That von Neumann coupling can lead to such Lindblad evolution in the case of continuous
indirect non-selective measurements with zero-mean Gaussian detectors was also noted by Breuer
and Petruccione [25, §3.5.2, p.162]; however, here we make a single Gaussian detection after a
duration of time, producing an effective flow parameter (g/2σ)2.
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(6.33) and (6.77),

〈x〉f T = g
TrS

(
P̂fE({Â, ρ̂i})

)
2TrS

(
P̂fE(ρ̂i)

) , (6.79a)

〈p〉f T =
g

~
~2

4σ2

TrS

(
P̂fad∗[−iÂ](E(ρ̂i))

)
TrS

(
P̂fE(ρ̂i)

) . (6.79b)

Surprisingly, the special properties of the Gaussian moments (6.76) allow (6.79)

to be written in a form proportional to the real and imaginary part of a complex

weak-value parameter involving the decohered system state (6.78) to all orders in

the coupling strength g,

Aw(ε) =
TrS

(
P̂f Âρ̂i(ε)

)
TrS

(
P̂f ρ̂i(ε)

) , (6.80a)

〈x〉f T = gReAw(ε), (6.80b)

〈p〉f T =
g

~
~2

4σ2
(2ImAw(ε)). (6.80c)

Following the interpretations outlined in this paper we can therefore understand

the position shift ReAw(ε) to all orders in g as the average of the observable Â

in the decohered initial system state ρ̂i(ε) conditioned on the post-selection P̂f .

Similarly, we can understand the factor 2ImAw(ε) in the momentum shift to all

orders in g as the logarithmic directional derivative of the probability of post-

selecting P̂f given the decohered initial system state ρ̂i(ε) along the unitary flow

generated by Â.

If the measured operator is the qubit operator Â = Aσ̂3 as in (6.60), then we
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r2
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∆Σ3 HΡiHΕLL

Figure 6.4: (color online) Two projections of the Bloch sphere showing the pure
decoherence of the specific state ρ̂i(ε) = exp(εL[σ̂3])(ρ̂i) = (1̂+exp(−2ε)

√
3σ̂2/2+

σ̂3/2)/2 due to the Gaussian detector (6.81). (left) The projection onto the plane
r1 = 0 showing the progressive collapse of ρ̂i(ε) onto the r3 axis with increasing
ε. (right) The projection onto the plane r3 = 0 showing the vector field δσ3(ρ̂i(ε))
during the progressive collapse. Notably the quantity 2ImAw(ε) (6.80) is the rate
of change of the post-selection probability (6.49) along this vector field for all ε,
but not along the purely decohering trajectory that ρ̂i(ε) actually follows.

can further simplify the expression (6.77) using the identities (6.62) to find,

E(ρ̂i) = ρ̂i +
1

2
(e−(Ag/σ)2/2 − 1) (r1σ̂1 + r2σ̂2) , (6.81)

=
1

2

(
1̂ + r3σ̂3 + e−(Ag/σ)2/2 (r1σ̂1 + r2σ̂2)

)
,

which shows how the measurement decoheres the bases orthogonal to Â in the

initial state with an increase in the dimensionless flow parameter (Ag/σ)2 4. This

decoherence is illustrated in Figure 6.4. The conditioned means (6.79) of a Gaus-

4The continuous measurement of a double quantum dot that is discussed in [68, 103] can
be mapped onto this problem so that (Ag/σ)2 → γt where γ = 1/Tm is an inverse charac-
teristic measurement time that acts as a dephasing rate due to the continuous non-selective
measurement. Hence, the results obtained therein are special cases of the exact solution (6.82).
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sian qubit detector consequently have the exact form,

〈x〉f T = g
〈A〉0
p̃(f)

, (6.82a)

〈p〉f T =
g

~
~2

4σ2

2A

p̃(f)
e−(Ag/σ)2/2(r1TrS (ρ̂f σ̂2)− r2TrS (ρ̂f σ̂1)),

p̃(f) = 1 + r3TrS (ρ̂f σ̂3) + e−(Ag/σ)2/2 (r1TrS (ρ̂f σ̂1) + r2TrS (ρ̂f σ̂2)) ,

to all orders in the coupling strength g. When expanded to linear order in g,

(6.82) reduces to (6.46) with the real and imaginary parts of the qubit weak value

(6.70), as expected.

For contrast, as g becomes large the unconditioned measurement of Â becomes

essentially projective and the operation E almost completely decoheres the initial

state (6.81) into the basis of Â as the pointer basis,

E(ρ̂i) ≈
1

2

(
1̂s + r3σ̂3

)
. (6.83)

Hence, in this strong measurement regime, the conditioned means (6.82) approx-

imate,

〈x〉f T ≈ g
〈A〉0

1 + r3TrS (ρ̂f σ̂3)
, (6.84a)

〈p〉f T ≈ 0. (6.84b)

The position shift contains the average of Â in the decohered initial system state

E(ρ̂i), conditioned by the post-selection. Moreover, since the decohered initial

system state E(ρ̂i) is essentially diagonal in the basis of Â, it will no longer Rabi

oscillate, so the directional derivative along the flow generated by Â will be es-

sentially zero. Hence, the probability correction factor represented by 2ImAw(ε)

vanishes.
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Figure 6.5: (color online) (left) A possible implementation of a conditioned po-
larization measurement similar to [44], where the length of a birefringent crystal
determines the coupling strength g. (right) The weak value Re 〈σ3〉w correspond-
ing to the Hermite-Gauss detector profiles in Fig. 6.6 and reduced states in (6.89)
with m = 0 (solid, red), m = 1 (dashed, blue), and m = 2 (dot-dashed, green),
obtained by averaging according to Eq. (6.87). The weak limit g → 0 is identical
for all detectors, as is the strong limit g → ∞ of a classical conditioned average,
but the specifics of the transition depend on how the detector decoheres the state.
The dotted horizontal line is the eigenvalue bound of 1.

6.5.4 Hermite-Gauss Modes

To show how our general Wigner function expressions in Eqs.(6.41) can be ap-

plied beyond the Gaussian case, we now consider the more general Hermite-Gauss

modes {|hm〉}, which are a widely used complete set of transverse modes naturally

generated in laser cavities that can describe an initial zero-mean and collimated

detecting beam. The Gaussian state in the last section is a special case for m = 0.

The Wigner distribution for a Hermite-Gauss mode of order m ∈ {0, 1, 2, . . . } has

the form [210],

WHG
m (x, p) =

(−1)m

π~
Lm[2G(x, p)] e−G(x,p), (6.85a)

G(x, p) =
x2

2σ2
+

2σ2p2

~2
, (6.85b)
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Figure 6.6: (color online) Post-selected detector intensities for the initial polariza-
tion state |ψi〉 = (cos(7π/8), sin(7π/8)) and final post-selection |ψf〉 = (1, 1)/

√
2,

using the first three Hermite-Gauss detector modes with σ = 2. Averaging these
profiles produces weak values according to Eq. (6.87) and shown in Fig. 6.5. The
dashed line indicates the initial detector intensity.

where Lm is a Laguerre polynomial of order m. The first few such polynomials

are shown in Table 6.1 for reference.

After Fourier-transforming Eq. (6.85) and integrating according to Eq. (6.41a),

we obtain a compact expression for the exact post-interaction reduced system state

for any coupling strength and initial detector mode m,

ρ̂
(m)
i (ε) = Em(ρ̂i) = Lm

[
−2 εL[Â]

]
exp

[
εL[Â]

]
(ρ̂i), (6.86)

which generalizes (6.78) to any mode number m. As with (6.78), a measurement

strength parameter ε = (g/2σ)2 naturally appears for all modes along with the

Lindblad operation L[Â] = ad∗[−iÂ]2/2 that decoheres bases orthogonal to the

eigenbasis of Â [25, 73]. Furthermore, the functional form of (6.86) is the same
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Figure 6.7: (color online) Reduced polarization states (6.89) corresponding to the
detector responses in Fig. 6.6. Bloch sphere distortions are shown with the σ3

axis aligned vertically; the red dot tracks the initial state chosen in Fig. 6.6. For
m > 0 any initial state will experience decoherence oscillations and pass directly
through the σ3 axis before partially recohering.

as the Wigner distribution (6.85) up to normalization, but with the function

G(x, p) replaced by the Lindblad operation −εL[Â]. Superpositions of modes are

considered in Appendix D.

Using Eqs. (6.86), (6.41), and (6.33) we also obtain the following compact

results for the exact detector averages for any initial Hermite-Gauss detector mode

of order m,

〈x〉f = gReAw(ε), (6.87a)

〈p〉f = g
~

(2σ)2
2 Im(Aw(ε) + ∆m(ε)). (6.87b)

Perhaps surprisingly, they are still parametrized for all orders in ε by a com-

plex weak value parameter (6.80) with pre-selection equal to the reduced post-
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m Lm(x) −2L′m(x)
0 1 0
1 1− x 2
2 1− 2x+ x2/2 4− 2x
3 1− 3x+ 3x2/2− x3/6 6− 6x+ x2

Table 6.1: Laguerre polynomials Lm(x) and their derivatives for the first few m.
These polynomials appear naturally for Hermite-Gauss modes in their Wigner
distribution (6.85), as well as the resulting system operations (6.86) and (6.88).

interaction system state ρ̂
(m)
i (ε) given in Eq. (6.86), and one additional weak-

value-like correction term for the higher mode numbers m ≥ 1,

∆m(ε) =
TrS

(
P̂f ÂMm(ρ̂i)

)
TrS

(
P̂f ρ̂

(m)
i (ε)

) , (6.88a)

Mm(ρ̂i) = −2L′m

[
−2 εL[Â]

]
exp

[
εL[Â]

]
(ρ̂i). (6.88b)

The first few polynomials−2L′m(x) in Mm that contain the derivatives of Laguerre

polynomials are shown in Table 6.1 for reference.

The appearance of a correction to ImAw in Eq. (6.87b) further strengthens the

observation in that ImAw pertains solely to the rate of change of the post-selection

probability and not to the measurement of Â itself. Indeed, for m = 0 Eqs. (6.86)

and (6.87) correctly reproduce the exact Gaussian detector case that we derived

using the perturbative method in the last section.

We stress that these are general results for any system observable Â. Figs. 6.5,

6.6, and 6.7 show the special case of an optical application, where Â = σ̂3 is

a polarization observable being measured by a Hermite-Gaussian beam. Given

an initial state ρ̂i = (1̂ +
∑

k rkσ̂k)/2 with Pauli operators σ̂k as in (6.60) and

a measurement of Â = σ̂3 being made with Hermite-Gauss mode m, the post-

interaction state from Eq. (6.86) can be computed with the qubit identities (6.61)
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to produce,

ρ̂
(m)
i (g) =

1

2

[
1̂ + r3σ̂3 + Lm

[
(g/σ)2

]
e−(g/σ)2/2(r1σ̂1 + r2σ̂2)

]
. (6.89)

Fig. 6.5 shows a possible implementation of this example that is analogous to the

experiment performed in [44], as well as how the generalized weak value (6.36)

continuously changes into a classical conditioned average as the initial state de-

coheres into the reduced state (6.89). Fig. 6.6 shows the post-interaction spatial

intensity profiles for the detector, while Fig. 6.7 shows the corresponding reduced

polarization states (6.89). Notably, these results for the qubit show that the deco-

herence generally undergoes oscillations due to the lobed structure of the detector

profile; it need not be a simple exponential decay.
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7 Concluding remarks

I know of nothing more terrible than the poor creatures who have learned
too much. Instead of the sound powerful judgement which would probably
have grown up if they had learned nothing, their thoughts creep timidly and
hypnotically after words, principles and formulae, constantly by the same
paths. What they have acquired is a spider’s web of thoughts too weak to
furnish sure supports, but complicated enough to provide confusion.

Ernst Mach, (1886)

As we were trained classically, we physicists speak of physical objects like

‘point particles’ and ‘fields’ that possess tangible observable properties like ‘en-

ergy,’ ‘momentum,’ ‘charge,’ and ‘spin.’ We describe these objects as statically

existing extended curves or surfaces contained in a self-consistently warped yet

unchanging geometric background of ‘spacetime.’ We speak of experience in this

description as a meta-rule: as proper time elapses, a point or hyperplane traverses

a pre-determined curve in the static geometry at a fixed rate, steadily uncovering

a pre-determined future. Such a description of changeless form embodies the dep-

recated philosophy of realistic determinism; it is neat and tidy, and ultimately an

averaged approximation.

Irreducible stochasticity, such as that present in quantum measurements, un-

dermines the entire concept of a physical spacetime. A stochastic event transforms

the uncertain potentiality of the future to certainty in the past, which necessitates
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irreversible change and distinguishes the present as the center of that change. Put

another way, a stochastic event implies an active stochastic process. A physical

spacetime is a static structure with future, past, and present on equal footing, so it

does not admit this sort of change. Since stochastic events cannot be determined

a priori, a physical spacetime can be constructed only as a retrospective history

of events that have already occurred. It will become real only after it is measured,

in a manner of speaking. However, the reality will be that of the correlations

between past events recorded in a history book1.

Mathematical objects defined in terms of spacetime—e.g., particle and field

states, and their observable properties—must suffer a similar disillusionment of

their physical status in any stochastic theory. Those objects may give us in-

sight into correlations between the physical events of our experience, but they

cannot be the reality to which those events correspond. Any advocation of the

reality of spacetime and its associated objects would require the denial of in-

trinsic stochasticity, and thus inexorably lead to quantum interpretations that

contain no stochastic measurement events (such as the many-worlds interpreta-

tion). However, forcing a deterministic philosophy simply to allow the reification

of mathematical abstractions like spacetime and its associated objects is at best a

“bad habit” [211]. At worst, this bad habit creates a delusion that obstructs our

ability to reason honestly about our models of the physical world.

If we wish to avoid delusions of this sort, then we must change the language we

use and embrace the inherent stochasticity observed in the laboratory. Spacetime

cannot be understood as fundamentally physical in a stochastic theory, so we must

describe it in a manner that better reflects its significance: it is a set of symmetries

that collections of recorded stochastic events are observed to obey. It specifies how

relatively moving, rotated, and translated observers will record the same set of

1It is worth noting that this tension between stochasticity and the intrinsic physicality of
spacetime underpins both the quantum measurement problem and the deep incompatibility
between general relativity and the quantum theory.
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events, and thus specifies how one must transform different event records so that

they agree on the same content. These symmetries are embodied by a continuous

Lie group known as the Poincaré group, which constitutes a powerful constraint

upon the form of the possible events that can occur. The events themselves are

physical; spacetime indicates the symmetries that those events satisfy and thus

provides a structural constraint that potential events must obey. We outlined

how such a Lie group will lead to a natural algebraic structure in Appendix A.

The possible events themselves take the algebraic form of spectral idempotents.

Working algebraically thus provides a direct connection between the symmetry

constraints and the physical events.

As a corollary, states in the form of spacetime fields cannot be understood

as fundamentally physical: they are probability functionals over a set of potential

events constrained by group symmetries that produce collections of likelihoods for

events to occur, and thus govern how realized events will be correlated. Hence,

states must correspond solely to undetermined events—events that are known

to have occurred are not described directly by such a state, but instead provide

boundary conditions that serve to further constrain the state. States are thus man-

ifestly counter-factual fictions, existing only as abstract constructions for deriving

inferences that satisfy the constraints imposed by symmetries (such as spacetime)

and other measured boundary conditions. Their associated probabilistic predic-

tions depend upon the assumed symmetries, the assumed prior information about

past events, and the presumed set of future events that may occur. This probabil-

ity calculus provides a form of logic that is suitable for manipulating uncertainty,

as we explored in Chapters 2 and 3.

The measurable observables have a peculiar dual role in this stochastic struc-

ture. On one hand they are defined abstractly as group generators in a Lie algebra

that dictate the possible physical symmetries, as discussed in Appendix A. On the

other hand, they can be constructed from spectral idempotents or other proba-



201

bility observables that correspond directly to measurable events, which allows

them to be assigned measurable values associated with a counter-factual state or

an experimentally realized ensemble that spans an equivalence class of measured

spacetime points. We detailed this correspondence by introducing generalized

spectra known as contextual values in Chapters 2 and 3. These contextual values

are assigned by an experimenter to each event recorded with an imperfectly corre-

lated detector in order to construct the average value of an observable that can be

assigned to an ensemble of events. We then showed how to condition these aver-

ages in a general way by partitioning the possible ensembles of recorded detector

events into classes labeled by subsequently recorded events.

The deterministic notion of a classically intrinsic objective property mani-

fests only in a restricted sense when examining large collections of simultaneously

recorded measurement events that begin to approximate a mean frequency field

over a realized spacetime; associating such an emergent mean field with the as-

signed average values of the group generators produces a classical spacetime field.

However, the intrinsic stochasticity present in a sequence of measurement events—

such as those considered with conditioned averages—can expose the effective dis-

turbance that breaks the identification of deterministic properties compatible with

the measured sequence. We showed this behavior explicitly by deriving and exper-

imentally violating generalized Leggett-Garg inequalities using an optical setup

in Chapter 4. Notably, the violations could be understood as a form of classically

invasive disturbance occurring between each recorded event.

We also showed nonclassical behavior explicitly in Chapter 5 by considering the

which-path information of an electronic Mach-Zehnder interferometer as measured

by an equivalent coupled interferometer. Examination of measurement event se-

quences in the form of conditioned observable averages shows similar violation of

classical spectral bounds, exposing the effective disturbance between the measure-

ments due to intrinsic stochasticity. We also showed that when the recorded events
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are unbiased with respect to the which-path observable then quantum erasure can

be attained by partitioning the detector events into complementary sets, restoring

in a conditioned sense the original counter-factual state on each sub-ensemble.

In Chapters 3, 4, and 5, we saw that the real part of a peculiar complex

quantity known as the quantum weak value kept appearing as a limiting value for

a weakly measured conditioned observable average. To further understand the

complex weak value, we carefully explored how it has been traditionally defined

in the literature by exactly solving the von Neumann measurement protocol alge-

braically in Chapter 6. We found that while the real part of the weak value may

indeed be interpreted as a conditioned average of an observable, the imaginary

part does not pertain to the measurement of an observable. Instead, the imag-

inary part describes the role of the observable as the generator of a Lie group,

as expected from the discussion in Appendix A, and thus indicates the symmetry

group foundation of the quantum theory.

The significance of quantum observables has become more clear through the

investigations presented in this work. While they are defined as dynamical enti-

ties that generate continuous group transformations, observables can acquire an

emergent description as physical properties given a sufficiently large ensemble of

recorded stochastic events. Provided that a set of realized events are tightly cor-

related to a locally emergent spacetime region, one can approximately associate

observable properties to that region as classical mean fields ; however, distributed

ensembles of events cannot produce such a local mean field description a priori.

These distributed ensembles, however, can be used to inferentially assign mean

observable values to a local spacetime region using the contextual values tech-

nique. Hence, an extended notion of a classical mean field can be constructed a

posteriori over an emergent spacetime of measured past events. Such a technique

provides an intriguing window into the structure of the irreducible stochasticity

present in the physical world.
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A Algebraic Quantum

Mechanics

The steady progress of physics requires for its theoretical formulation a mathematics
which get continually more advanced. This is only natural and to be expected. What
however was not expected by the scientific workers of the last century was the par-
ticular form that the line of advancement of mathematics would take, namely it was
expected that mathematics would get more and more complicated, but would rest on a
permanent basis of axioms and definitions, while actually the modern physical devel-
opments have required a mathematics that continually shifts its foundation and gets
more abstract. Non-euclidean geometry and noncommutative algebra, which were at
one time were considered to be purely fictions of the mind and pastimes of logical
thinkers, have now been found to be very necessary for the description of general
facts of the physical world. It seems likely that this process of increasing abstrac-
tion will continue in the future and the advance in physics is to be associated with
continual modification and generalisation of the axioms at the base of mathematics
rather than with a logical development of any one mathematical scheme on a fixed
foundation.

Paul A. M. Dirac (1931) [212]

To complement the discussion in the main text, we briefly review how observ-

ables in the quantum theory can be defined from a slightly more abstract point

of view advocated by Weyl [213] and Wigner [214]. Namely, we delay the intro-

duction of operators and Hilbert space in favor of a purely algebraic approach

that makes transparent the structural foundation of the theory. To accomplish

this, we review the essential features of continuous Lie groups, their generat-

ing Lie algebras, the universal enveloping *-algebra that contains both, and the
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possible embedding of the enveloping algebra as a subalgebra of an even richer

algebra. Traditional quantum observables will be identified as the elements of

a non-commutative Lie algebra that satisfy the associative algebraic product of

its universal enveloping algebra. We will see that all the essential aspects of the

quantum theory will appear within this enveloping algebra.

Of particular interest for the main text will be the appearance of idempotent-

valued spectral measures for the Lie algebraic elements and their algebraic powers.

These measures will lead to a natural definition of the trace and the Hilbert-

Schmidt inner product on the algebra, both of which play an important role in

the main text. We deliberately omit the stochastic content of the quantum theory

here, since it is developed more systematically in Chapters 2 and 3.

A.1 Lie Groups

A group G is a set of algebraic elements that is closed under an associative binary

product, has a multiplicative identity, and has an involution that specifies a unique

inverse for each element. These properties are summarized in Table A.1. A group

is a highly abstract—and thus very general—mathematical concept. However, we

will be most interested in its foundational significance for quantum physics, where

it naturally specifies physical symmetries [213].

The elements of a symmetry group specify the possible transformations for

a physical system in an abstract way, without specifying exactly what is being

transformed. The identity element is a trivial transformation that leaves the

system unchanged. The group product indicates a composition of transformations.

Hence, any combination of transformations is another valid transformation, and
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Closed: gh ∈ G
Associative: g(hk) = (gh)k = ghk
Unital: g1 = 1g = g
Inverse: g∗∗ = g

gg∗ = g∗g = 1

Table A.1: Algebraic properties of a group G. Here, g, h, k ∈ G and ∗ : G→ G is
the group involution producing the inverse.

transformations can be reduced pairwise provided that their order is unchanged.

The inverse indicates that any transformation can be undone.

The most important type of symmetry group for specifying physical transfor-

mations is a continuous symmetry group—known as a Lie group—which consists

of a continuous differentiable manifold of group elements such that the inverse

and product are continuous operations on that manifold. The groups of spatial

rotations, spacetime-translations, and Lorentz boosts are poignant examples of

Lie groups. We shall assume that such a Lie group manifold is simply connected

for reasons that will soon become clear.

A.1.1 Lie Algebra

The manifold structure of a Lie group implies that any local region of the manifold

around a particular group element g ∈ G can be parametrized by a set of real

local coordinates ~x = (x1, . . . , xN) ∈ RN called a coordinate chart, where N

is the dimension of the manifold. Each point g(~x) ∈ G of the group manifold

has a tangent vector space Tg(~x)G with basis elements that can be determined

by taking partial derivatives with respect to a chosen set of local coordinates

~Di(~x) = ∂xig(~x). Any vector in the tangent space at the point g(~x) of the manifold

is a linear combination of these basis vectors, ~Y (~x) =
∑

i y
i ~Di(~x), where the
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components yi ∈ R are real numbers.

The tangent vector space g = T1G at the identity element g(0) = 1 of a Lie

group is particularly important for determining the structure of the group. This

tangent vector space is also a non-associative algebra under a binary product

known as the Lie bracket, and is known as the Lie algebra of the group. The Lie

bracket relations between a set of basis elements ~Di of the vector space,

[ ~Di, ~Dj] = ckij
~Dk, (A.1)

specify the structure constants ckij that completely determine the Lie algebra. We

will return to the significance of this bracket shortly.

The Lie algebra completely determines the local structure of a Lie group man-

ifold that is simply connected to the identity, which is why we restricted ourselves

to simply connected group manifolds. That is, the smoothness of the manifold

implies that points near to the identity g(0) = 1 along a straight coordinate curve

g(ε~y) parametrized by a real parameter ε ∈ R can be formally determined by

expanding it into a Taylor series around the identity,

g(ε~y) =
∞∑
n=0

1

n!
(∂ε)

ng(ε~y)|ε=0 =
∑
n

1

n!
(ε~Y )n = exp(ε~Y ), (A.2)

where ~Y =
∑

i y
i ~Di(0) is the vector in the Lie algebra that directly corresponds

to the local coordinate tangent vector ~y = (yi). Inverting the direction of this

tangent vector produces the inverse group element g∗(ε~y) = g(−ε~y) = exp(−ε~Y ).

Thus, exponentiating the Lie algebra directly translates the group identity to other

elements of the Lie group without having to specify a local coordinate chart on

the group manifold a priori. We will henceforth dispense with these coordinate
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charts as superfluous, and characterize the group directly with its Lie algebra.

To move our discussion forward, we briefly delay the justification of the vector

products that appear in the sum (A.2) until Section A.1.3.

Generally, Lie groups do not commute, gh 6= hg (e.g., the Lie group of spatial

rotations). We can measure the local structure of group commutation by consid-

ering the quantity ghg∗h∗ for group elements close to the identity, g = exp(ε~Y ),

and h = exp(ε~Z). Computing this to linear order in ε produces the Lie bracket

by definition, exp(ε~Y ) exp(ε~Z) exp(−ε~Y ) exp(−ε~Z) = 1 + ε[~Y , ~Z] + O(ε2), which

has the explicit algebraic form of a commutator,

[~Y , ~Z] = ~Y ~Z − ~Z~Y . (A.3)

Hence, the Lie bracket specifies the degree to which associated group actions do

not locally commute.

A.1.2 Lie Exponential Map

The Lie exponential map expε(~Y ) is formally defined to uniquely specify the one-

parameter subgroup of the manifold that has the tangent vector ~Y at the identity.

That is, expε(~Y ) ∈ G is the unique curve parametrized by ε such that exp0(~Y ) = 1,

∂ε expε(~Y )|ε=0 = ~Y , and expε1(
~Y ) expε2(

~Y ) = expε1+ε2(
~Y ). The exponential series

expansion we used in (A.2) is equivalent to this map provided that the tangent

vectors along the curve of the subgroup point in the same direction so that they

can be identified, ~Di(ε) = ~Di(0).

More generally, we can consider specifying a Lie group element by translating

along an arbitrary curve of the group manifold specified by a tangent vector field
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such that the tangent vector rotates as it is transported along the curve. This

can be described by a rotation field Rε along the curve that specifies the appro-

priate local correction to the tangent vectors ~Di(ε) = Rε( ~Di(0)) with R0 being

the identity operation [215]. In such a case the series expansion (A.2) of the Lie

exponential map for this curve will only formally hold to first order in ε, while the

full map will be the integration of the differential equation,

∂ε expε(~Y ) = ~Y (ε) expε(~Y ), (A.4)

where ~Y (ε) = Rε(~Y ) is the rotating, and thus ε-dependent, generator for the

curved one-dimensional subgroup. This equation has a formal solution as the

exponential series of an integral,

expε(~Y ) =
∞∑
n=0

1

n!

[∫ ε

0

dε′ ~Y (ε′)

]n
= exp

(∫ ε

0

dε′ ~Y (ε′)

)
. (A.5)

A.1.3 Universal Enveloping Algebra

Strictly speaking, for the formal algebraic expressions used in (A.2), (A.3), (A.4),

and (A.5) to make sense we must extend the applicability of the algebraic product.

That is, we must work within the universal enveloping algebra E(g) that contains

the real numbers R, the Lie group elements G, their Lie algebra g, and all the

direct algebraic powers of the Lie algebra gn, such that the group product and the

Lie bracket are faithfully represented by the product in the enveloping algebra.

This enveloping algebra can be constructed as a quotient ring from the most

general graded tensor algebra generated by the Lie algebra vector space, T(g) =⊕∞
n=0 T

kg, where the grade-0 elements T 0g = R are the real numbers, and the
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grade-k elements T kg =
⊗k

n=1 g are the kth-order tensor products of the Lie

algebra. The enveloping algebra is the quotient E(g) = T(g)/IL of the tensor

algebra with a two-sided ideal chosen to represent the Lie bracket as a commutator

to match (A.3),

IL =
{
C
(
~A⊗ ~B − ~B ⊗ ~A− [ ~A, ~B]

)
D
∣∣ ~A, ~B ∈ g, C,D ∈ T(g)

}
. (A.6)

This quotient creates an equivalence relation between all elements satisfying the

form of the ideal IL. With this construction of the universal enveloping algebra,

the exponential sums in (A.2) and (A.5) makes algebraic sense and are well defined.

Moreover these sums ensure that the algebraic product of the enveloping algebra

E(g) will be a faithful extension of the group product of G.

The constructed universal enveloping algebra E(g) has two associative binary

operations: a (generally non-commutative) product inherited from the Lie group,

and a commutative sum inherited from the Lie algebra. It is closed under both

these operations, obeys the standard distributive property between product and

sum, and contains both the additive identity (0), and the multiplicative identity

(1). The sum always has an inverse obtained by taking the negative of an element.

The product is not generally invertible.

The group involution can be extended to the enveloping algebra so that it

becomes a *-algebra. This is done by applying the involution to the exponential

in (A.2), which implies that it must be equivalent to the additive inverse when

applied to the Lie algebra ~Y ∗ = −~Y , making the Lie algebra anti-Hermitian under

the algebraic involution. The involution then extends naturally to all the algebraic

products of the Lie algebra by reversing the product order in the same manner

as a transpose ( ~A~B)∗ = ~B∗ ~A∗, and distributing over sums ( ~A + ~B)∗ = ~A∗ + ~B∗.
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Closed: AB ∈ E(g)
A+B ∈ E(g)

Associative: A(BC) = (AB)C = ABC
A+ (B + C) = (A+B) + C = A+B + C

Multiplicative identity: A1 = 1A = A
Additive identity: A+ 0 = 0 + A = A
Scalar multiplication: (αA)(βB) = (αβ)(AB)

α(A+B) = αA+ αB
Distributivity: A(B + C) = AB + AC

(A+B)C = AC +BC
Involution: A∗∗ = A

(AB)∗ = B∗A∗

(A+B)∗ = A∗ +B∗

Table A.2: Properties of the universal enveloping algebra E(g) that faithfully
contains the Lie group G, its Lie algebra g, and the scalars R. Here, A,B,C ∈ E(g)
and α, β ∈ R. Complexifying this algebra substitutes C for R.

These properties are all summarized in Table A.2.

This universal enveloping algebra is the minimal algebra that faithfully con-

tains the Lie group and its Lie algebra. However, it may in turn be embedded as a

closed subalgebra of an even larger *-algebra E(g) ⊂ A that can contain additional

structure not specified solely by a Lie group, but which may still be physically

relevant or convenient. For a poignant example, the graded enveloping algebra

E(g) may be embedded as the even-graded subalgebra of a larger super-algebra

such as a Clifford algebra that can have other helpful properties or physical rele-

vance [87–92, 215–217]. We will illustrate how the Lie group of quantum spin can

be readily described using such an embedding in Section A.8. In what follows,

however, we need only assume that we are working in some appropriate algebra

A that contains the universal enveloping algebra E(g) of the group as a closed

subalgebra.
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A.2 Quantum Observables

Traditional quantum observables are fundamentally defined to be the elements

of a non-commutative Lie algebra contained within its universal enveloping alge-

bra. Hence, the structure of a set of observables is completely specified by their

commutation relations. Indeed, we will find that all aspects of the traditional

quantum theory are contained in the enveloping algebra for the Lie algebra of the

observables without the introduction of any auxiliary Hilbert space.

Conventionally in physics we complexify the algebra (i.e., replace the scalars

of E(g) with the complex numbers C) and formally write the anti-Hermitian Lie

algebra elements ~Y using a scalar imaginary, ~Y = −i ~G, where ~G∗ = ~G are then

Hermitian generators under the involution, and where the involution is extended

to the complex numbers as the complex conjugate i∗ = −i. The structure con-

stants (A.1) specified by a basis ~Di = −i ~Gi acquire a scalar imaginary factor,

[~Gi, ~Gj] =
(
ickij
)
~Gk, when specified in terms of the Hermitian generators.

With the introduction of the scalar imaginary, we can write (A.4) and its

solution (A.5) in the more familiar form,

i∂εUε = ~G(ε)Uε, (A.7)

Uε = exp

(
−i
∫ ε

0

dε′ ~G(ε′)

)
, (A.8)

where Uε = expε(−i ~G) is the exponential map specifying the curve through the

group manifold generated by a (possibly ε-dependent) Hermitian algebraic element

~G(ε) acting as a vector field..

Equation (A.7) is a generalization of the Schrödinger equation expressed di-

rectly at the level of its propagator, where the flow parameter ε is usually a proper
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time, and the generator ~G = ~H/~ is usually a scaled Hamiltonian that generates

the translations along that proper time. We can therefore understand such a dif-

ferential equation as specifying the orbit of a particular one-dimensional subgroup

through a larger Lie group manifold.

To match standard quantum conventions for clarity, we will adopt the conven-

tion of using a scalar imaginary and Hermitian generators −i ~G in what follows.

We will use the term observable to specifically denote these Hermitian generators.

We will also use the term propagator to denote a one-parameter subgroup orbit

Uε specified by an equation like (A.7).

A.3 Adjoint Maps

A Lie group can act directly on itself as a transformation. The form of the action

of the group element g on another element h can take three distinct forms: a

left product h 7→ g∗h, a right product h 7→ hg, and a double-sided product

h 7→ g∗hg. Of particular interest in this work will be the double-sided product,

since it preserves the group structure, hk 7→ g∗hgg∗kg = g∗hkg. Such a structure-

preserving transformation that uses the group elements to map the group onto

itself is an inner automorphism.

The adjoint map lifts a group element g to its inner automorphism,

Adg(h) = g∗hg. (A.9)

The inverse of the adjoint map flips the product order, Ad∗g(h) = Adg∗(h) = ghg∗,

so that Ad∗gAdg(h) = AdgAd∗g(h) = h for any h ∈ G.

A Lie group G can also act directly on its Lie algebra g and its enveloping
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algebra E(g) via this adjoint map. Notably, if h = expε(−i ~G), then Adg(h) =

g∗ expε(−i ~G)g = expε(−iAdg(~G)), since the automorphism preserves the algebraic

products in the exponential sum.

As another notable example, a propagator g = Uε = expε(−i ~G) as in (A.7)

acts directly on an observable ~X according to,

AdUε( ~X) = U∗ε
~XUε = expε(i ~G) ~X expε(−i ~G). (A.10)

The adjoint group action on an observable thus generalizes the Heisenberg pic-

ture of the evolution of an observable, for which ~G = ~H/~ is usually the scaled

Hamiltonian and ε a proper time.

The adjoint map for the Lie group also defines an induced adjoint map for its

Lie algebra by taking a derivative,

ad[−i ~G](−i ~X) = ∂εAdexpε(−i ~G)(−i ~X)|ε=0 = [−i ~X,−i ~G]. (A.11)

This induced map lifts an element of the Lie algebra to its associated right action

on the Lie algebra itself, which has the form of a commutator. Similarly, the

induced map that corresponds to the inverse adjoint map is the reversed commu-

tator, ad∗[−i ~G](−i ~X) = [−i ~G,−i ~X], or left action on the Lie algebra.

Notably, the induced adjoint map can specify the evolution of an observable

under a propagator directly,

∂ε ~Xε = ad[−i ~G(ε)]( ~X) = [ ~X,−i ~G(ε)], (A.12)

where ~Xε = AdUε( ~X). This equation generalizes Heisenberg’s equation of motion
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for an observable by specifying how to transport it along a particular curve of the

group manifold; it has the same information content as the Schrödinger equation

for the propagator itself (A.7). Its solution relates the adjoint map of a Lie group

to the induced adjoint map of its algebra,

Adexpε(−i ~G)(
~X) = expε

(
ad[−i ~G]

)
( ~X), (A.13)

and takes the form of an exponential sum of nested commutators that act as

directional derivatives along the flow of the group action.

A.4 Idempotents, Spectra, and Irreducible Fac-

tors

Since the universal enveloping algebra E(g) is a closed graded algebra, it will have

a graded basis. For example, 1 is the sole basis element of the grade-0 part of E(g),

while the Lie algebra basis {−i ~Gj} will be a basis for the grade-1 part of E(g). The

bases of higher grades in E(g) will be specified by the algebraic products of the

grade-1 basis. As an alternative to this graded basis, however, algebraic elements

may also be expanded in terms of characteristic spectral idempotents ε, which

square to themselves ε2 = ε. These spectral idempotents will play a fundamental

role in the development of the statistical aspect of the theory in Chapters 2 and

3.

Idempotents can be given a natural partial order, such that ε1 ≤ ε2 ⇐⇒

ε1ε2 = ε2ε1 = ε1. Hence, if ε1 < ε2 then ε2 = ε1 + ε̄1 for some other idempotent ε̄1

that is disjoint to ε1 in the product sense ε1ε̄1 = ε̄1ε1 = 0. According to this partial
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ordering, 0 is the smallest idempotent, while 1 is the largest; these always exist, so

are called the trivial idempotents. A nontrivial idempotent that is strictly greater

than zero according to this ordering but that cannot be further decomposed is

called primitive. Primitive idempotents have the important algebraic property

that for any A ∈ E(g),

εAε = λε, (A.14)

for some λ that commutes with the entire algebra, which for E(g) must be a scalar

[89].

The idempotent partial ordering implies that the identity may be decomposed

into a sum of smaller disjoint idempotents, 1 = ε1 + ε̄1. Furthermore, if there exist

primitive idempotents then any such partition of unity may be further split until

it is resolved into a sum of primitive disjoint idempotents,

1 =
∑
n

εn. (A.15)

If a countable set of primitive idempotents do not exist, then this splitting proce-

dure may be continued indefinitely. In such a case, there is a continuum of idem-

potents and we can consider this splitting procedure to define a measure space

of disjoint idempotent intervals [218] such that the identity may be decomposed

using an integral,

1 =

∫
dε . (A.16)

The idempotent-valued measure dε takes a measurable set from some indexing

measurable space, such as the Borel sets on the real line, and uniquely assigns it
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a corresponding idempotent.

Given such a partition of unity, other inequivalent partitions may be specified

through group automorphisms, 1 = Adg(1) =
∫

Adg(dε). Each new measure

Adg(dε) will specify a different characteristic set of idempotents for the algebra.

The generalized spectral theorem for associative algebraic elements provides the

link between these idempotent partitions of unity and the enveloping algebra E(g).

Specifically, any algebraic element can be decomposed as a sum of characteristic

elements that form a spectral basis for that element [219, 220],

A =
∑
i

(λi + ϑi)εi, (A.17)

where λi ∈ C are complex eigenvalues of A with degeneracy ni, εi are disjoint

idempotents that partition unity
∑

i εi = 1, and ϑnii = 0 are nilpotents of a degree

ni that matches the associated eigenvalue degeneracy. The spectral eigenvalues,

idempotents, and nilpotents can all be obtained from the characteristic polynomial

of A. For a normal element that satisfies A∗A = AA∗, then all characteristic

nilpotents are identically zero ϑi = 0 and the idempotents are Hermitian εi = ε∗i

[219]. Therefore, the elements of a Lie algebra g, which are anti-Hermitian and

therefore normal, will be completely characterized by sets of disjoint idempotents

that partition unity and their associated spectra.

Such a spectral decomposition for a normal element holds even for a continuum

of idempotents [23], so any Lie algebra element −i ~G ∈ g will have a spectral

decomposition in terms of a Hermitian idempotent-valued measure,

−i ~G = −i
∫

dε(x)G(x), (A.18)
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where G(x) is its characteristic spectrum, and dε is the corresponding spectral

idempotent-valued measure. Since ~G is Hermitian, its spectrum G(x) will be

real and its idempotents will also be Hermitian. It then follows that ~Gn =∫
dε(x)Gn(x) and higher powers will be entirely characterized by powers of the

spectrum. The idempotent structure thus completely determines the bases of any

grade in the enveloping algebra E(g) and provides an equivalent spectral basis for

the algebra [91, 218, 221].

Evidently, any elements of the algebra that can be expanded using the same

spectral idempotent-valued measure will commute. Moreover, if there are two

mutually commuting subsets of the Lie algebra {−i ~G(1)
i } and {−i ~F (2)

j } of the Lie

algebra such that [~G
(1)
i , ~F

(2)
j ] = 0 but do not themselves commute [~G

(1)
i , ~G

(1)
j ] 6= 0

and [~F
(2)
i , ~F

(2)
j ] 6= 0 unless i = j, then it follows that their respective partitions

of unity are completely independent. That is, the vector space of the Lie al-

gebra factors into two independent Lie algebras as a direct sum g = g1 ⊕ g2,

so the enveloping algebra has the corresponding structure of a direct product of

the enveloping algebra of each factor E(g) = E(g1) ⊗ E(g2). Each independent

idempotent-valued measure is thus a decomposition of the identity that is con-

strained to a single factor of this product, implying that the identity has a more

complete decomposition as a product of identities and thus a product of measures,

1 = 1112 =

[∫
dε1

] [∫
dε2

]
=

∫∫
d2(ε1ε2). (A.19)

Reducing the Lie algebra to its independent factors in this way is a useful

way to understand its structure. When a factor cannot further be reduced into

factors, it is called an irreducible factor of the Lie algebra. Each irreducible factor

can define its own independent Lie group and enveloping algebra, but a product
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of factors is a larger space that contains more structure than each of the factors

considered separately. The treatment of quantum spin in Section A.8 provides an

illustrative example of such a decomposition.

A.5 Trace

The idempotent-valued measures (A.16) permit a natural trace measure to be de-

fined on the algebra. The trace is a linear measure Tr (A+B) = Tr (A) + Tr (B)

that obeys a cyclic property Tr (AB) = Tr (BA). Noting that any primitive idem-

potent ε has the reduction property (A.14), we can define the trace as the cyclic

linear measure that assigns a constant value c ∈ R to any primitive idempotent

Tr (ε) = c. Any element A then has a well-defined trace by exploiting a partition

of unity,

Tr (A) = Tr

(∑
n

εnA

)
=
∑
n

Tr (εnAεn) =
∑
n

λnTr (εn) = c
∑
n

λn, (A.20)

which will be uniquely defined up to the choice of constant c. Moreover, the trace

is invariant under group automorphisms Tr (Adg(A)) = Tr (g∗Ag) = Tr (gg∗A) =

Tr (A), so it will not depend on the choice of partition of unity used to compute

it. In particular, if we choose the spectral decomposition of A then the constants

λn = An become eigenvalues and we can understand the trace as a sum of the

intrinsic eigenvalues of A.

For a continuous set of idempotents, this definition can be generalized by taking

a limiting procedure of splitting the idempotents until the primitive idempotent

relation (dε(x))A (dε(x)) = λ(x)dε(x) will be approximately satisfied with an
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error term that vanishes in the limit. The trace will then have the limiting form,

Tr (A) =

∫
Tr ((dε(x))A (dε(x))) =

∫
Tr (dε(x))λ(x) = c

∫
dxλ(x). (A.21)

The resulting measure Tr (dε(x)) = cdx must be translation-invariant on the in-

dexing set, so will be a multiple of the Lebesgue measure. More generally, it will

be a Lebesgue-Stieltjes measure that can have isolated singular points correspond-

ing to primitive idempotents in the continuum [218]; the relation (A.20) is then a

special case when the indexing measure is purely discrete.

Since a complete idempotent-valued measure will factor into a product of mea-

sures if the Lie algebra is reducible, the trace will also factor into a product of

traces for each factor, called partial traces,

Tr (A) = Tr1(Tr2(A)) = Tr2(Tr1(A)). (A.22)

For elements that are a product of the factors, then these partial traces decou-

ple into the product of partial traces applied to each factor, Tr
(
A(1)B(2)

)
=

Tr1(A(1))Tr2(B(2)).

The trace also imbues the algebra with a natural inner product,

〈A,B〉 = Tr (A∗B) , (A.23)

known as the Frobenius (or Hilbert-Schmidt) inner product [23]. This inner prod-

uct is invariant under group automorphisms, 〈Adg(A),Adg(B)〉 = 〈A,B〉, and

reflects the rigid manifold geometry that is inherent to a Lie group. The trace

and inner product also permit a natural classification of the elements of the alge-
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Trace-class: ||T ||1 <∞
Hilbert-Schmidt: ||S||2 <∞
Compact: C =

∑
n cnεn, limn→∞|cn| = 0

Bounded: |〈T,B〉| <∞

Table A.3: Classification of algebraic elements. Here, T, S, C,B ∈ E(g) such
that the letters distinguish the different classes. The classes satisfy the general
inclusion relations, {T} ⊂ {S} ⊂ {C} ⊂ {B} ⊂ E(g). Elements of E(g) that are
not bounded are unbounded.

bra, as well as a Type classification of the various permitted algebras; these are

detailed in Appendix A.6 for completeness.

A.6 Algebraic Norms and Classification

The algebraic trace outlined in (A.20) and (A.21) gives the embedding algebra

E(g) a natural trace norm,

||A||1 = Tr (|A|) = c

∫
dx |λ(x)|, (A.24)

Similarly, the Hilbert-Schmidt inner product (A.23) defines the Hilbert-Schmidt

norm for the embedding algebra,

||A||2 =
√
〈A,A〉. (A.25)

The trace, inner product, and their associated norms allow us to further classify

the elements of the algebra, as shown in Table A.3. The trace-class and bounded

elements are examples of a special class of *-algebra called W ∗-algebras, or von

Neumann algebras [93]. Their dual relation under the Hilbert-Schmidt inner prod-

uct permits a non-commutative generalization of a measure space. As such, von
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Type I: Tr (ε) = cn, n ∈ N
—Type IN : Tr (1) = cN , N ∈ N
—Type Iℵ0 (I∞): Tr (1) = cℵ0

Type II: Tr (ε) = cx, x ∈ R, x > 0
—Type II1: Tr (1) = cX, X ∈ R, X > 0
—Type IIℵ1 (II∞): Tr (1) = cℵ1

Type III: Tr (ε) = c∞

Table A.4: Classification of algebraic factors. Here ε is an arbitrary idempotent
of the factor, ℵ0 is the cardinality of the natural numbers, ℵ1 is the cardinality of
the real numbers, and ∞ is an infinity of unspecified cardinality.

Neumann algebras form a natural setting for discussing non-commutative proba-

bility theory and quantum operations [17–27, 81–83, 222, 223]. Hence, the devel-

opment in Chapters 2 and 3 are more rigorously set within the context of these

von Neumann algebras embedded within the enveloping algebra for the Lie group.

The irreducible factors of the enveloping algebra can also be classified according

to the possible values that the partial traces (A.22) can take on the idempotents

of each factor, as shown in Table A.4 [93]. Type I factors have countable numbers

of primitive idempotents. Type II factors have continuous sets of idempotents

that can form non-divergent measure spaces using the trace. Type III factors are

pathological since they always diverge under the standard trace, but are thankfully

rare; Connes has developed more advanced methods using non-standard traces for

dealing with the divergences of these factors [224].

The factors IN and II1 are called finite factors since they can always be nor-

malized by choosing the trace constant to be c = 1/N or c = 1/X, respectively.

The other factors are called infinite1. The probability theory developed in Chap-

1It is worth noting, however, that the infinite Type Iℵ0
and Type IIℵ1

factors can also be
effectively normalized by extending the scalar field to an extension of the real numbers that
sensibly admits infinitesimals and inverse infinitesimals, such as Robinson’s non-standard reals
R∗ [79, 80], or Connes’ noncommutative infinitesimals [224].



235

ters 2 and 3 rigorously belongs to the setting of normalizable Type I and Type

II factors.

A.7 Representations and Hilbert Space

I would like to make a confession which may seem immoral: I do not believe abso-
lutely in Hilbert space any more. After all, Hilbert space (as far as quantum me-
chanical things are concerned) was obtained by generalizing Euclidean space, footing
on the principle of ‘conserving the validity of all formal rules’ . . . . Now we begin
to believe that it is not the vectors which matter, but the lattice of all linear (closed)
subspaces. Because: 1) The vectors ought to represent the physical states, but they
do it redundantly, up to a complex factor, only 2) and besides, the states are merely
a derived notion, the primitive (phenomenologically given) notion being the quali-
ties which correspond to the linear closed subspaces. But if we wish to generalize
the lattice of all linear closed subspaces from a Euclidean space to infinitely many
dimensions, then one does not obtain Hilbert space, but that configuration which
Murray and I called ‘case II1.’ (The lattice of all linear closed subspaces of Hilbert
space is our ‘case I∞.’)

John von Neumann (1935), as quoted in [225]

The dominant formalism for quantum mechanics is not the algebraic formu-

lation that we have developed; it is the state-vector formulation in a separable

Hilbert space that was carefully developed in 1932 by von Neumann [11] as a pos-

sible rigorous implementation of the physical postulates and formal manipulations

outlined by Dirac in 1930 [10]. In the Hilbert space formalism, the observable al-

gebra is treated as an algebra of linear operators that act on state-vectors, which

are understood to be fundamental aspects of the theory.

However, by 1935 von Neumann had already renounced Hilbert space as an

appropriate foundation of the theory in favor of the abstract algebraic approach

[225]. This change in heart brought him closer to the group algebra approach that

Weyl had already been advocating by 1930 [213]. Dirac later noted in 1965 that

state-vectors in a Hilbert space could become pathological in quantum electrody-
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namics when an algebraic approach could still obtain sensible results [226]. Indeed,

it has become clear in recent decades that an abstract algebraic approach will gen-

erally be required to sensibly describe infinite dimensional systems [23, 227–241].

In these cases, one is forced to abandon the state-vectors in favor of more general

state-functionals over the abstract algebra of observables. We use this approach

preferentially in the main text. The algebra takes on a fundamental role, while

Hilbert space is demoted to a representation space for that algebra.

That being said, these observations have not detracted from the utility of

Hilbert space as a representation space for calculations and rigorous proofs. In-

deed, working within a concrete representation of such an associative *-algebra

can have its advantages. However, it is conceptually important that Hilbert space

is not an intrinsic part of quantum mechanics; it is an auxiliary vector space

that can be introduced to provide a convenient representation for the associative

algebra of the symmetry groups inherent to quantum mechanics.

A.7.1 Hilbert Space

Any associative algebra A can be manipulated abstractly by specifying the alge-

braic products. However, one can also make a representation of the algebra by

mapping its elements to linear operators that act on an auxiliary vector space H

such that the algebraic product becomes the operator product. This vector space

H is often assumed to have an inner product (~v, ~w) ∈ C, where ~v, ~w ∈ H, and

contain all its limit points under the inner product norm, limn→∞ ||~vn − ~v|| =

0 =⇒ limn→∞ ~vn = ~v ∈ H, where ||~v||2 = (~v,~v). Such a complete inner product

space is called a Hilbert space. A separable Hilbert can be spanned by a countable

set of vectors.
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Under such a representation, π : A → O(H), the algebraic product will corre-

spond to an operator product, π(AB) = π(A)π(B) = ÂB̂, where the hats indicate

a Hilbert space operator. The representation is faithful if each operator represen-

tation Â can be inverted to retrieve a single corresponding algebraic element A.

The representation is irreducible if there are no nontrivial subspaces of H that

are invariant under the action of all operators in the representation π(A) of the

algebra A.

The primary reason to adopt such a representation is that vector spaces and

their linear operators are mathematical tools that are well understood and well de-

veloped. By transporting algebraic questions into a Hilbert space setting, certain

calculations may become more transparent. However, any algebraically mean-

ingful results will be independent of the chosen representation and in principle

obtainable without using any particular representation. The physics is contained

in the structure of the algebra, not in the representation of that structure.

A Lie group G has two natural associative algebras that one can represent on a

Hilbert space: its adjoint map composition algebra AdG, and its universal envelop-

ing algebra E(g). A representation of the former is called an adjoint representation

of the group. A representation of the latter is called a unitary representation of

the group. We will now briefly review both.

Adjoint Representation

The adjoint map Adg produces a faithful representation of a Lie group element

g ∈ G acting as an inner automorphism operator on its own Lie algebra g as the

auxiliary vector space. The operator product corresponds to the composition of

adjoint maps. Specifically, since the Lie algebra is already a vector space it can



238

be spanned by a particular basis { ~Dj = −i ~Gj}. One can thus represent that basis

as column vectors that have 1 in the jth place and 0 elsewhere. Then Adg can be

represented as a matrix acting on that column vector such that the matrix product

produces the composite transformation2. It follows that Ad∗g is represented as the

inverse matrix of Adg.

The induced adjoint map ad[−i ~G] is also represented as an operator acting on

the Lie algebra. The operator product corresponds to the successive nesting of

the Lie bracket. The matrix of ad[−i ~Gj] in this representation has particularly

simple components (ad[−i ~Gj])
`
k = c`jk that are specified entirely by the structure

constants of the algebra (A.1). Computing a matrix exponential of the represen-

tation of ad[−i ~Gj] produces the matrix representation of Adexpε(−i ~Gj)
according

to (A.13). Hence, the structure constants determine the entire group action on

its own Lie algebra.

Unitary Representation

A representation π : E(g) → O(H) of the enveloping algebra of a Lie group

on an auxiliary Hilbert space H must preserve the algebraic product and map

the involution to the operator adjoint with respect to the Hilbert space inner

product. That is, π(AB) = π(A)π(B) = ÂB̂ and π(A∗) = Â† where A,B ∈ E(g),

Â, B̂ ∈ O(H), and the operator adjoint is defined via the inner product on H

according to (~v, Â~w) = (Â†~v, ~w) for any vectors ~v, ~w ∈ H in the domain of Â.

The inner product on H is chosen such that the operator trace faithfully matches

the invariant algebraic trace Tr (A) 7→ Tr
(
Â
)

=
∑

n(~vn, Â~vn) up to an arbitrary

constant. Such a representation is guaranteed to exist for E(g) by the Gel’fand-

2The Bloch sphere representation of a qubit is an adjoint representation of this form.
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Naimark-Segal (GNS) construction [23].

It follows that in any such representation the group elements will be unitary

operators g 7→ Û that satisfy Û †Û = Û Û † = 1̂, where 1 7→ 1̂ is the identity

operator. Hence, any representation of the enveloping algebra will be a unitary

representation for the group itself. It also follows that the unitary representations

of propagators Uε 7→ Ûε = exp(−iεĜ) will have self-adjoint operators as their

generators Ĝ† = Ĝ. Indeed, Stone’s theorem guarantees from the converse per-

spective that any one-parameter group of unitary operators acting on a Hilbert

space must be generated via the exponentiation of self-adjoint operators in pre-

cisely this manner [23].

Furthermore, since a unitary representation preserves the algebraic product,

the idempotents of the algebra ε2 = ε must correspond to projection operators on

the Hilbert space, ε 7→ Π̂. Moreover, each orthogonal basis of Hilbert space vectors

{~vn} ∈ H will be in one-to-one correspondence with a disjoint set of idempotents

{εn} 7→ {Π̂n} that partition unity
∑

n εn = 1 7→ 1̂ =
∑

n Π̂n. Hence, separable

Hilbert spaces naturally and faithfully represent factors that have countable sets of

primitive idempotents. Additionally, the Hilbert-Schmidt inner product between

two idempotents that correspond to vectors in the Hilbert space will map directly

to the complex square of the inner product between those vectors, 〈εn, εm〉 =

Tr (ε∗nεm) 7→ Tr
(

Π̂nΠ̂m

)
= |(~vn, ~vm)|2. The nonsquared inner product of the

Hilbert space only helps to represent the algebraic product.

Irreducible representations correspond to tensor products of the representa-

tions of irreducible factors. That is, a Lie algebra g = g1⊕g2 produces an algebra

with multiple factors E(g) = E(g1)⊗ E(g2) that has an irreducible representation

π1(E(g1))⊗π2(E(g2)) on a tensor product of Hilbert spaces H1⊗H2 corresponding
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to the irreducible representations of each factor.

For factors with continuous sets of idempotents there is no direct mapping

between those idempotents and the countable basis vectors of a separable Hilbert

space. However, an idempotent-valued measure (A.16) that partitions unity can

be mapped to a projection-valued measure (PVM) on
∫

dε 7→
∫

dΠ̂ that partitions

the identity operator on the Hilbert space. It follows that the spectral idempotent

decomposition of a Hermitian generator (A.18) maps to the spectral projection

decomposition of a self-adjoint operator ~G =
∫

dε(x)G(x) 7→
∫

dΠ̂(x)G(x) = Ĝ.

Indeed, such a decomposition is guaranteed from the converse perspective by the

spectral theorem for self-adjoint operators on a Hilbert space [23]. An orthonormal

basis of Hilbert space vectors in such a case will correspond to a countable set

of spectral idempotents of some compact algebraic element. The continuum of

idempotents will correspond instead to the orthogonal vectors of Φ∗ in a rigged

Hilbert space, or Gel’fand Triplet, Φ ⊂ H ⊂ Φ∗ [91, 227–229]; the larger space Φ∗

contains functionals that act sensibly only on a subset Φ ⊂ H.

A.7.2 Dirac Notation

As we have seen, orthogonal state-vectors of a separable Hilbert space ~vn ∈ H cor-

respond to disjoint algebraic idempotents εn ∈ E(g) in the enveloping algebra for

a Lie group. However, each such idempotent is directly represented by a projec-

tion operator εn 7→ Π̂n corresponding to a one-dimensional subspace [vn] ⊂ H

such that Π̂n[vn] = [vn]. This subspace contains not just a single vector ~vn

but rather an equivalence class of vectors ~vn ∈ [vn] ⊂ H such that the equiv-

alence class [vn] is invariant under multiplication by a nonzero complex scalar,

∀z ∈ C \ {0}, z[vn] = [vn]. This subspace excludes the zero vector, so is a ray in
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the projective Hilbert space P(H). For calculations, one typically chooses a par-

ticular representative ~vn ∈ [vn] ⊂ H, normalizes it ~vn → ~vn/(~vn, ~vn)1/2 for later

convenience, and treats any remaining overall phase factor as relative to an arbi-

trary fixed choice eiφ~vn ∼ ~vn. This normalization procedure effectively fixes the

trace constant c in (A.20) to be unity.

Each state-vector ~v ∈ [v] ⊂ H is uniquely associated with a linear functional

v† : H→ C, known as the dual of ~v, that is defined by the inner product v†(~w) =

(~v, ~w). To facilitate computations, Dirac [10] introduced a popular notational

simplification that denotes state vectors by a ‘ket’ symbol |v〉 = ~v, and their dual

functionals by a ‘bra’ symbol 〈v| = v†. The normalized inner product is written as

a conjoined ‘bra-ket’ 〈v|w〉 = (~v, ~w) ∈ C, such that 〈v|v〉 = 1. A one-dimensional

projection can then be written as the dyad Π̂v = |v〉 〈v| , such that its action

on a vector takes the form Π̂v |w〉 = |v〉 〈v|w〉. Spectral expansions can thus be

written, Â =
∑

nAn |an〉 〈an| . A matrix representation of these symbols using a

particular reference basis can be constructed such that a ket will correspond to a

column vector, a bra to the complex transpose of the ket (a row vector), the inner

product will correspond to the matrix product between a row and a column, and

the dyad to the matrix product between a column and row.

For factors with a continuum of idempotents represented on a rigged Hilbert

space, the Dirac notation is extended to represent the non-normalizable orthog-

onal elements in the larger space Φ∗. Specifically an idempotent-valued mea-

sure maps to a projection-valued measure,
∫

dε 7→
∫

dΠ̂ =
∫

dx |x〉 〈x| , such

that the individual dyads formally decompose into δ-normalized elements of Φ∗,

〈x|x′〉 = δ(x− x′), where δ(x − x′) is the Dirac delta distribution. The dyad ab-

sorbs the inverse infinitesimal measure of a primitive idempotent in the continuum
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such that (dε)2 = (dε) 7→ (dx |x〉 〈x|)(dx′ |x′〉 〈x′|) = dx |x〉 (dx′δ(x− x′) 〈x′|) =

dx |x〉 〈x| . Hence, each ket |x〉 has units of the inverse square root of the infinites-

imal Lebesgue-Stieltjes measure dx.

In the main text, we express results using Dirac notation in a (rigged) Hilbert

space when it is particularly clear or convenient to do so. However, we also strive

to emphasize the algebraic foundations of the quantum theory and acknowledge

the operator formalism as a convenient representation of the algebraic structure.

A.8 Example: Quantum Spin

As an illuminating example of how the enveloping algebra of a Lie group can

be embedded in a larger algebra with additional structure, we will briefly review

the natural algebra for describing spacetime. This algebra is a maximal division

algebra that is constructed to preserve the Minkowski inner product η(·, ·) : R4 ×

R4 → R on spacetime, known as an orthogonal Clifford algebra [89]. We shall

find that it has an even-graded subalgebra that is precisely the enveloping algebra

E(g) for the Spin(1,3) Lie group. This group completely encapsulates the notion

of quantum spin, including the relativistic Dirac spinors, the nonrelativistic Pauli

spinors, and the complex phase of the wavefunction.

A.8.1 Spacetime Algebra

Similarly to the enveloping algebra E(g) for a Lie group G in (A.6), the orthogonal

Clifford algebra of spacetime can be constructed as a quotient algebra from the
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graded tensor algebra T(R4) of R4 and the two-sided ideal,

IM =
{
A (~v ⊗ ~v − η(~v,~v))B

∣∣ ~v ∈ R4, A,B ∈ T(R4)
}
, (A.26)

that faithfully represents the Minkowski pseudonorm η(~v,~v) = ||~v||2 of a 4-vector

~v as its simple algebraic square ~v~v = ||~v||2. The spacetime algebra is then defined

as the quotient T(R4)/IM .

This abstract construction leads to an intuitive decomposition of the algebraic

product between two (grade-1) vectors,

~v ~w = η(~v, ~w) + ~v ∧ ~w, (A.27)

into a symmetric part (~v ~w + ~w~v)/2 = η(~v, ~w) that gives the Minkowski inner

product (producing a grade-0 scalar), and an antisymmetric part (~v ~w − ~w~v)/2 =

~v ∧ ~w that gives the wedge product familiar from differential forms (producing a

grade-2 bivector), which is a suitable generalization of the vector cross-product to

any dimension.

Using an orthonormal basis {~γµ}3
µ=0 for the vectors of spacetime, the algebraic

product produces 24 = 16 independent graded basis elements for the spacetime

algebra [90, 92, 215–217],

{1, ~γ0, ~γ1, ~γ2, ~γ3, ~γ01, ~γ02, ~γ03, ~γ12, ~γ23, ~γ31, ~γ012, ~γ123, ~γ230, ~γ301, γ0123}, (A.28)

where ~γµν = ~γµ~γν = ~γµ∧~γν gives a convenient shorthand for the basis elements of

higher grade. All the products between these graded basis elements are determined

by the Minkowski inner product and the fact that flipping the product order of
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two orthogonal vectors simply reverses the sign, ~γµν = −~γνµ. We use the signature

such that ~γ2
0 = 1 and ~γ2

j = −1 for j = 1, 2, 3, so ~γ0 is a timelike basis vector and

~γj are spacelike basis vectors.

A general element of spacetime algebra, known as a multivector, is a linear

combination of these 16 basis elements over the reals; one can project a multivector

onto any particular grade with a grade projection 〈A〉ξ where ξ = 0, 1, 2, 3, 4 are

the various grades. The grade-0 projection onto the scalars of the algebra obeys

the cyclic property 〈AB〉0 = 〈BA〉0 and provides a natural definition for the trace

on the algebra (A.20), up to a constant. The basis elements of nonzero grade will

be traceless.

The algebra possesses a natural involution, known as reversion, which simply

reverses the order of all basis-element products, ~γ∗µνδ = ~γδνµ. As a consequence,

it satisfies the property (AB)∗ = B∗A∗ for any multivector product. Notably,

every grade-2 or grade-3 element is anti-Hermitian under this reversion, while

elements of grades 0,1,4 are Hermitian. The pseudonorm of any basis element is its

reversed square ||~γµν ||2 = ~γ∗µν~γµν ; as a result, the pseudonorm of any multivector

is the scalar part of its reversed square ||A||2 = 〈A∗A〉0. The inner product

between any two multivectors is similarly the scalar part of their reversed product

〈A,B〉 = 〈A∗B〉0, which has the same form as the Hilbert-Schmidt inner product

(A.23) with the grade-0 projection playing the role of the trace. Each element

with nonzero pseudonorm has an inverse under the product—e.g., the inverse of

a vector is simply ~γ−1 = ~γ/||~γ||2. The existence of this inverse for vectors (and

general multivectors) is one of the main advantages of the spacetime algebra.

It is easy to verify that the basis element of grade-4 γ0123 squares to −1,

commutes with elements of even grade, anti-commutes with elements of odd grade,
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and is Hermitian under reversion γ∗0123 = γ0123. We will denote it as I and call

it the pseudoscalar of the spacetime algebra. Multiplication by the pseudoscalar

converts an element of grade-k to an element of grade-(4− k), which is equivalent

to the Hodge star operation in differential forms. In particular, a trivector such as

~γ123 = I~γ0 can be written using this Hodge duality as the pseudoscalar multiplying

a vector, so will have the properties of pseudovectors (also known as axial vectors).

The six bivectors similarly split into two classes of three bivectors that are Hodge

duals of each other.

A.8.2 Spinor Algebra

The even-graded subalgebra of spacetime algebra, known as its spinor algebra,

has 23 = 8 basis elements,

{1, ~γ01, ~γ02, ~γ03, ~γ12, ~γ23, ~γ31, I}, (A.29)

that can be further partitioned into the scalars {1, I} that commute with the

whole spinor algebra, the three anti-Hermitian bivectors {~γ01, ~γ02, ~γ03} with −1

pseudonorm, and the three anti-Hermitian bivectors {~γ12, ~γ23, ~γ13} with +1 pseudonorm.

These six bivectors obey the commutation relations,

[~γ23, ~γ31] = 2~γ12 [~γ31, ~γ12] = 2~γ23 [~γ12, ~γ23] = 2~γ31, (A.30)

[~γ01, ~γ02] = −2~γ12 [~γ02, ~γ03] = −2~γ23 [~γ03, ~γ01] = −2~γ31, (A.31)

[~γ23, ~γ02] = 2~γ03 [~γ31, ~γ03] = 2~γ01 [~γ12, ~γ01] = 2~γ02, (A.32)

which are the Lie bracket relations for the Lie algebra of the Lorentz group of

spacetime boosts and rotations. Exponentiating this algebra produces the simply
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connected Spin(1,3) Lie group, which is a double-covering of the identity compo-

nent of the Lorentz group. Hence, the spinor algebra is the enveloping algebra E(g)

for the Spin(1,3) Lie group, and naturally appears as the even-graded subalgebra

of the spacetime algebra.

Given a 4-vector ~v =
∑

µ v
µ~γµ, and a Spin(1,3) group element exp(θ ~B/2),

where ~B is any linear combination of the 8 basis elements of the spinor algebra,

then the automorphism exp(θ ~B∗/2)~v exp(θ ~B/2) produces a Lorentz transforma-

tion of ~v with an rotation angle θ in the spacetime plane corresponding to ~B. The

bivectors with negative pseudonorm generate (hyperbolic) boost rotations upon

exponentiation. The bivectors with positive pseudonorm generate (elliptic) spa-

tial rotations. The scalars generate phase-rotations upon exponentiation, which

do not cancel in the automorphism since I∗ = I.

The Spin(1,3) Lie algebra can be written as a direct sum of the three sets of

generators. However, only the phase generators {1, I} and the rotation generators

{~γjk} are closed under Lie bracket relations and can form proper subgroups upon

exponentiation. Hence, the enveloping algebra is a semi-direct product and not a

true direct product of independent factors as discussed in Section A.4. Neverthe-

less, one can neglect the boost generators as an approximation to produce a sub-

group Spin(3)=SU(2) of the Spin(1,3) group, which is a simply connected double-

covering of the spatial rotation group SO(3) that is equivalent to the quaternion

algebra. Neglecting the spatial rotation generators as a further approximation

produces the subgroup Spin(1) = SU(1) of the Spin(3) group, which is simply the

algebra of complex numbers.

There are 8 graded basis elements of the spinor algebra, so 8 real components

are necessary to fully parametrize it. We can, however, construct a complex
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spectral basis of four idempotents as in (A.18) by examining the characteristic

polynomials of the generators. As an example, consider a bivector ~A = a~γ23 +b~γ01

with elements in both bivector sets. It has a characteristic polynomial,

( ~A)4 − 2(a2 − b2)( ~A)2 + 4a2b2(a2 − b2)2 = 0, (A.33)

that has four roots (±a±ib). Performing the partial fraction decomposition of the

inverse of this polynomial, as outlined in [219], produces a set of four idempotents

that decompose unity and form a spectral basis for ~A. Every spectral basis for

an element with nonzero pseudonorm3 will be an appropriate Spin(1,3) group

automorphism of the following four primitive idempotents that partition unity as

discussed in Section A.4,

ε±,± =
1

4
(1± ~γ0)(1± i~γ23), (A.34)

where i∗ = −i is an introduced anti-Hermitian scalar imaginary that commutes

with the entire spacetime algebra. The scalar imaginary makes the idempotent

factor (1± i~γ23)/2 properly Hermitian under the algebraic involution.

Thus, the enveloping algebra for the Spin(1,3) Lie algebra can be represented

on a complex Hilbert space of dimension 4, known as the Dirac spinor basis. In

that representation, the spacetime basis vectors ~γµ have the form of the complex

Dirac γ-matrices (motivating the notation) with their matrix products forming

the higher-grade basis elements. The pseudoscalar I has the form of the scalar

imaginary −i multiplying the Dirac γ5-matrix.

3For contrast, lightlike elements in the algebra have zero pseudonorm and cannot be boosted,
so their spectral basis elements will have a nilpotent factor multiplying a purely rotational
idempotent such as (1± iγ23)/2.
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If the boost generators are neglected then performing the spectral decomposi-

tion produces only two elements in the complex spectral basis, (1±i~γ23)/2. Hence,

the enveloping algebra for the Spin(3)=SU(2) Lie algebra can be represented on

a complex Hilbert space of dimension 2, known as the Pauli spinor basis. In that

representation, the quantity i~γ23 becomes the Hermitian Pauli σ1-matrix, while

the pseudoscalar I reduces to the scalar imaginary −i.

If the rotation generators are also neglected, then only the scalar part of the

algebra remains. Hence, the enveloping algebra for the Spin(1)=SU(1) Lie algebra

can be represented on a complex Hilbert space of dimension 1, known as the

Schrödinger spinor basis. Under this representation I is simply replaced by the

scalar imaginary −i. Hence, a complex phase will be the only manifestation of

the relativistic spin stemming from the Lie group Spin(1,3) of possible group

transformations for spacetime when boosts and rotations can be neglected.

Interpreting the spectral idempotents that partition unity as mutually exclu-

sive propositions, as outlined in Chapters 2 and 3, provides the statistical inter-

pretation for quantum spin. In most non-collider laboratory situations boosts

can be neglected, so spin will be effectively two-valued and well-described by the

subalgebra of Pauli spinors, as used in the main text.
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B Sufficient Conditions for the

Weak Value

In Section 3.5 we showed that the post-selected conditioned average (3.40) pro-

duces the quantum weak value (3.43) unless the contextual values being averaged

have poles larger than 1/εn. For most experiments, these higher-order poles will

not appear, so this caveat does not spoil the convergence. However, it is instruc-

tive to examine how these poles arise.

For sake of discussion, we consider the following additional assumptions:

1. The probability observables Ey(ε) =
∑

y′M
†
y,y′(ε)My,y′(ε) commute with the

observable FX .

2. The equality FX =
∑

y fY (ε; y)Ey(ε) is satisfied, where the CVs fY (ε; y) are

selected according to the pseudo-inverse prescription.

3. The minimum nonzero order in ε for all |M |y,y′(ε) is εn such that assumption

(3) can also be satisfied for some CVs by the truncation to order εn. That is,

for all y,y′, |M |y,y′ = cy,y′1X + |M |(n)
y,y′ε

n + O(εn+1), where
∑

y′ c
2
y,y′ = PY (y)

is the detector probability in absence of interaction, and some of the |M |(n)
y,y′

may vanish.
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First, we note that FX commutes with {Ey(ε)} by assumption (1). As such, we

will replace the CV definition FX =
∑

y fY (ε; y)Ey(ε) with an equivalent matrix

equation,

~fX = S~fY , (B.1a)

S =

〈Ey(ε)〉x · · ·...
. . .

 . (B.1b)

The pseudoinverse is constructed from the singular value decomposition S =

UΣVT as S+ = VΣ+UT , where U and V are orthogonal matrices such that

UTU = VVT = 1, Σ is the singular value matrix composed of the square roots of

the eigenvalues of SST , and Σ+ is composed of the inverse nonzero elements in

ΣT .

Next, we note that the truncation of the matrix S to order εn has the form,

S′ = P + εnSn, (B.2)

where P = (PY (y)~1, · · · ) is a matrix whose rows are identical and whose columns

contain the interaction-free detector probabilities PY (y), and Sn = ( ~E
(n)
1 , · · · ) is

a matrix whose rows all sum to zero. Furthermore, since the solution to the

equation ~fX = S′ ~f ′Y is assumed to exist by assumption (3), then the dimension of

the detector, N , must be greater than or equal to the dimension of the system,

M .

We can then show that the singular values of the truncated matrix S′ have

maximum leading order εn unless an exotic condition is met. To see this, note

that the singular values of S′ are σk =
√
λk, where λk are M eigenvalues of
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H = STS, with its other N −M eigenvalues being zero. This matrix has the form

H = PTP + εn(STnP + PTSn) + ε2nSTnSn, where (PTP)ij = MPY (i)PY (j) is M ||~p||2

times the projection operator onto the probability vector ~p = (PY (y), · · · ). We

will use H to determine the singular values of S′.

Differentiating the eigenvalue relation H(εn)~uk(ε
n) = λk(ε

n)~uk(ε
n) with re-

spect to εn produces the following deformation equation that describes how the

eigenvalues of H continuously change with increasing εn,

λ̇k(ε
n) = 2(P~uk(ε

n)) · (Sn~uk(εn)) + 2εn||Sn~uk(εn)||2. (B.3)

Integrating this equation produces the following perturbative expansion of the

eigenvalues for small ε,

λk(ε
n) = λk(0) + 2εn(P~uk(0)) · (Sn~uk(0)) + ε2n||Sn~uk(0)||2 (B.4)

+ ε2n [(P~u′k(0)) · (Sn~uk(0)) + (P~uk(0)) · (Sn~u′k(0))] +O(ε3n),

where ~u′k(0) = ∂εn~uk(ε
n)|ε=0.

Since H(0) = PTP is a projection operator, λ1(0) = M ||~p||2 is its only

nonzero eigenvalue with associated eigenvector ~u1(0) = ~p/||~p||. Hence, σ1(ε2n) ≈
√
M ||~p|| > 0 to leading order. For k 6= 1, λk(0) = 0 and ~uk(0) span the degen-

erate (N − 1)-dimensional subspace orthogonal to ~u1(0). Furthermore, by direct

computation we can show for k 6= 1 that ~u′k(0) = −~u1(0)
[
~1 · Sn~uk(0)

]
/M ||~p||.

Therefore, for k 6= 1 the expansion (B.4) simplifies to,

λk(ε
n) = ε2n

[
||Sn~uk(0)||2 − |~1 · Sn~uk(0)|2

]
+O(ε3n). (B.5)
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Hence, the term of order ε2n can vanish only if Sn~uk(0) = ~0 or if Sn~uk(0) = β~1 for

some constant β.

Suppose Sn~uk(0) = 0. It then follows that H(ε2n)~uk(0) = 0 since ~uk(0) is

orthogonal to ~u1(0) ∝ ~p. Therefore, ~uk(0) is an eigenvector of H(ε2n) with eigen-

value 0 for any ε. Since H is symmetric, its eigenvectors form an orthogonal set for

any ε, so we must have the identification ~uk(ε
2n) = ~uk(0). In this case, λk(ε

n) = 0.

Hence, the only way that λk(ε
n) can have a leading order greater than ε2n is if its

corresponding zeroth order eigenvector satisfies the relation Sn~uk(0) = β~1.

If we assume this exotic condition does not hold, then we can show that the

pseudoinverse solution ~fY to (B.1a) cannot have poles larger than 1/εn. To see

this, note that in order to satisfy (B.1a), we have the equivalent condition for each

component of UT ~fX = ΣVT ~fY ,

(UT ~fX)k = Σkk(V
T ~fY )k. (B.6)

Therefore, all singular values Σkk corresponding to nonzero components of UT ~fX

must also be nonzero; we shall call these the relevant singular values. Singular

values which are not relevant will not contribute to the solution ~fY = VΣ+UT ~fX .

We can see this since (~fY )j = (VΣ+UT ~fX)j =
∑

k VjkΣ
+
kk(U

T ~fX)k, so any zero

element of UT ~fX will eliminate the inverse irrelevant singular value Σ+
kk from the

solution for (~fY )j.

Since the orthogonal matrices U and V do not contain any poles, and since

~fX is ε-independent, then the only poles in the solution ~fY = S+ ~fX = VΣ+UT ~fY

must come from the inverses of the relevant singular values in Σ+. If a singular

value Σkk has leading order εm, then its inverse Σ+
kk = 1/Σkk has leading order

1/εm; therefore, to have a pole of order higher than 1/εn then there must be at
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least one relevant singular value with a leading order greater than εn. However, if

that were the case then the truncation S′ of S to order εn could not satisfy (B.6)

since to that order it would have a relevant singular value of zero according to the

previous argument, contradicting assumption (3) about needing to satisfy the CV

definition with the minimum nonzero order in ε.

To summarize, given the reasonable additional assumptions (1) and (2) about

the form of the weak interaction, and provided that the truncated equation is

satisfiable according to assumption (3), then the pseudoinverse solution ~fY =

S+ ~fX can have no pole with order higher than 1/εn unless the exotic condition

Sn~uk(0) = β~1 is met for some k. Hence, the majority of laboratory conditioned

averages should approximate weak values as the measurement becomes ambiguous.
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C Edge Channel Interaction

Phase

It may not be apparent that an extended Coulomb interaction between scattering

excitations in adjacent edge states can result in an additional joint phase accumu-

lation γ without destroying the phase coherence, as claimed in Chapter 5. Indeed,

in momentum-space the Coulomb interaction explicitly involves energy exchange

between the adjacent excitations, which would seem to imply that phase disruption

would occur. To assuage such concerns, we shall solve a simple model of Coulomb

edge state interaction for the two-excitation amplitude in the co-propagating re-

gion. We shall see that it is sufficient to keep the total energy of both excitations

constant in order to obtain a joint phase accumulation over the interaction length;

the fact that the excitations may exchange energy between them does not disrupt

the joint phase coherence.

Consider the longitudinal part of a two-particle amplitude ψ(x1, x2, t) that

describes chiral copropagation at a speed v along linear edge channels separated

by a fixed distance d. In the absence of any Coulomb interaction between the
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channels, ψ must satisfy the effective Schrödinger equation,

i~∂tψ = −i~v
2

(∂x1 + ∂x2)ψ. (C.1)

For a fixed total energy E, the general solution of this equation has the form,

ψE(x1, x2, t) = ψ0(t)ψ1(x1, x2)χ(x2 − x1), (C.2a)

ψ0(t) = ψ0 exp

(
−iE

~
t

)
, (C.2b)

ψ1(x1, x2) = exp

(
iE

~v
(x1 + x2)

)
, (C.2c)

where χ is an arbitrary function of the difference of the coordinates.

By choosing an initial boundary condition to be a product state of excitation

scattering states at distinct energies,

E±p = E(1± p), (C.3)

where p ∈ [−1, 1] such that the energy matching condition E+
p + E−p = 2E is

satisfied and E is correctly quantized, we fix χ to find the general product form

for a fixed joint energy of 2E,

ψp(2E, x1, x2, t) = ξ(E+
p , x1, t)ξ(E

−
p , x2, t), (C.4a)

ξ(E, x, t) = ξ0 exp

(
−iE

~
(t− 2x

v
)

)
. (C.4b)

As expected, the channel amplitudes are completely decoupled in the absence of

interaction and independently phase-coherent.

For a low-biased source, each single-particle energy will be approximately the
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Fermi energy E+
p ≈ E−p ≈ EF , and the propagation speed will be the Fermi veloc-

ity v = vF . Therefore, in the absence of interaction each particle will accumulate

a dynamical phase,

φ(EF , L) =
2EF
~vF

L, (C.5)

after a propagation length L, leading to a total joint dynamical phase of 4EFL/~vF .

If the co-propagating excitations are instead allowed to interact via a screened

Coulomb potential, the effective Schrödinger equation must be modified to,

i~∂tψ̃ = −i~v
2

(∂x1 + ∂x2)ψ̃ +
αe2

r
e−r/λψ̃, (C.6a)

r =
√
d2 + |x2 − x1|2, (C.6b)

where λ is the screening length, r is the interaction distance that depends in

the interacting region on the difference |x2 − x1| between the coordinates as well

as the distance d between the edge channels, and α is the Coulomb interaction

constant in appropriate units. This linear equation decouples in the coordinates

y1 = x1 + x2 and y2 = x2 − x1, so it may still be exactly solved.

For a fixed joint energy E, the general solution has the form,

ψ̃E(x1, x2, t) = ψ0(t)ψ̃1(x1, x2)χ̃(x2 − x1), (C.7a)

ψ̃1(x1, x2) = exp
(
ik̃(E, x1, x2)(x1 + x2)

)
, (C.7b)

k̃(E, x1, x2) =
1

~v
(E − αe2

r
e−r/λ) (C.7c)

where ψ0 is the same as in (C.2) and χ̃ is another arbitrary function of the dif-

ference of coordinates. The Coulomb potential thus gives an effective position-
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dependent shift to the joint wave-number k̃ for the amplitude, which will affect

the dynamical phase accumulation for the joint amplitude.

If we demand that for r � λ the general solution (C.7) should reduce to the

noninteracting solution (C.4), then we find the simplest form,

ψ̃p(x1, x2, t) = ψp(2E, x1, x2, t) e
−iγ(x1,x2), (C.8a)

γ(x1, x2) =
αe2

~r
e−r/λ

x1 + x2

v
, (C.8b)

where ψp is the noninteracting solution (C.4). The net effect of the Coulomb

interaction between the channels is thus to contribute a position-dependent (but

energy- and time-independent) phase γ(x1, x2) that entangles the coordinates of

the channels. Any remaining correction factor χ̃(x2−x1) to this simple form must

satisfy χ̃(0) = 1, so we will safely neglect it in what follows.

The excitations are collected at ohmic drains at fixed positions x1 = L1 and

x2 = L2 of the coordinates, so the detected phase γ(L1, L2) will be fixed by the

geometry and stable for any pair detection. Scattering states with fixed energy

such as (C.8) are stationary and extended throughout the interaction region, which

explains the geometric nature of the interaction-induced phase. The square of the

wave-function |ψ̃p(2E,L1, L2, t)|2 indicates the (typically small) probability that

the excitations will be detected simultaneously at any particular t at the drains.

However, by using a coincidence post-selection or by engineering a correlated

initial scattering state, one can in principle restrict the bulk of the measured

detections to be coincident.

If we further assume that before and after a co-propagation length L where the

channels are a fixed distance d apart both edge channels rapidly split away from
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one another, then to good approximation the Coulomb interaction only affects

the region of length L. After the interaction region, the equation of motion for

the state will effectively revert to (C.1), restoring noninteracting dynamical phase

accumulation similar to (C.5). Hence, the amplitude for jointly detecting the

excitations at ohmic drain positions L1 > L and L2 > L will contain an extra

dynamical phase that is accumulated by the joint state only within the interaction

region,

ψ̃p(L1, L2, t) = ψp(2E,L1, L2, t) e
−iγ, (C.9a)

γ = γ(L,L) =
αe2

~d
e−d/λ

2L

v
. (C.9b)

Moreover, the joint state may be further scattered after accumulating the joint

interaction phase but before the joint detection, as indicated in the main text.

We see that for such simultaneous detection the interaction phase γ will be linear

in the interaction length L and therefore should be tunable in principle.

If the detections are not simultaneous, then one excitation will be detected in

a drain at a time t1, followed by the second excitation at a later time t2. The joint

state will therefore be successively collapsed by the drain detections, which will

introduce an additional relative phase factor due to the discrepancy in detection

time. Specifically, for x1, x2 > L the joint state will have the form,

ψ̃p(x1, x2, t) = ψp(2E, x1, x2, t) e
−iγ, (C.10)

with the accumulated interaction phase γ as in (C.9). Detection of the first
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excitation at L1 at t1 then collapses the joint state to,

ψ̃′p(x2, t) =
ψp(2E,L1, x2, t)√

P (L1, t1)
e−iγ, (C.11a)

P (L1, t1) =

∫
dx2 |ψ̃p(L1, x2, t1)|2. (C.11b)

Evolving the remaining single particle state to time t2 and then detecting the

second excitation at L2 produces the amplitude,

ψ̃′′p =
ψp(2E,L1, L2, t1)√

P (L1, t1)
e−i(γ+E(t2−t1)/~). (C.12)

The only difference between the sequential detection amplitudes and the joint de-

tection amplitude (C.9) is the extra temporal phase that is accumulated between

the two detections. Notably, the extra temporal phase factor appears as a global

phase that should not affect the final statistics, in contrast to the geometric inter-

action phase γ, which can be exposed by further scattering before the sequential

detection as in the main text. Allowing for fluctuations in γ as in Section 5.2.7

will account for geometric uncertainty in the interaction length, as well as the pair

injection frequency of the source.
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D Joint Weak Value Moments

Here we derive the general equations (6.33) and (6.41) for the von Neumann de-

tector. All generalized conditioned detector moments can be determined through

conditioned characteristic functions following a similar derivation to (6.32),

〈
eiλx
〉

f
=

Tr
(

(P̂f ⊗ eiλx̂) ÛT ρ̂Û †T
)

Tr
(

(P̂f ⊗ 1̂d) ÛT ρ̂Û
†
T

) =
TrS

(
P̂f e

iλgÂXλ(ρ̂)
)

TrS

(
P̂f ρ̂′s

) , (D.1a)

〈
eiλp
〉

f
=

Tr
(

(P̂f ⊗ eiλp̂) ÛT ρ̂Û †T
)

Tr
(

(P̂f ⊗ 1̂d) ÛT ρ̂Û
†
T

) =
TrS

(
P̂f Pλ(ρ̂)

)
TrS

(
P̂f ρ̂′s

) , (D.1b)

where we have used the Weyl relation [23], eiax̂e−ibp̂/~ = eiabe−ibp̂/~eiax̂, and have

defined the post-interaction reduced state ρ̂′s = TrD

(
ÛT ρ̂Û

†
T

)
, as well as the λ-

dependent operations,

Xλ(ρ̂) =
1

2
TrD

(
ÛT (eiλx̂ρ̂+ ρ̂eiλx̂)Û †T

)
, (D.2a)

Pλ(ρ̂) =
1

2
TrD

(
ÛT (eiλp̂ρ̂+ ρ̂eiλp̂)Û †T

)
, (D.2b)

Computing derivatives of the characteristic functions produces the conditioned
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detector moments,

〈xn〉f =
∂n

∂(iλ)n
〈
eiλx
〉

f

∣∣∣
λ=0

, (D.3a)

〈pn〉f =
∂n

∂(iλ)n
〈
eiλp
〉

f

∣∣∣
λ=0

. (D.3b)

This procedure is similar in spirit to the full counting statistics approach employed

in [184].

The first two moments generalize (6.33) and are given explicitly by,

〈x〉f = Re 〈x〉w + gRe 〈A〉w , (D.4a)

〈p〉f = Re 〈p〉w , (D.4b)〈
x2
〉

f
= Re

〈
x2
〉w

+ 2gRe 〈xA〉w + g2 Re
〈
A2
〉w
, (D.4c)〈

p2
〉

f
= Re

〈
p2
〉w
, (D.4d)

in terms of the Heisenberg evolved joint post-selection P̂T = Û †T (P̂f ⊗ 1̂d)ÛT and

the joint weak values,

〈x〉w =
Tr
(
P̂T (1̂s ⊗ x̂) ρ̂

)
Tr
(
P̂T ρ̂

) , (D.5a)

〈A〉w =
Tr
(
P̂T (Â⊗ 1̂d) ρ̂

)
Tr
(
P̂T ρ̂

) , (D.5b)

〈p〉w =
Tr
(
P̂T (1̂s ⊗ p̂) ρ̂

)
Tr
(
P̂T ρ̂

) , (D.5c)

〈
x2
〉w

=
Tr
(
P̂T (1̂s ⊗ x̂2) ρ̂

)
Tr
(
P̂T ρ̂

) , (D.5d)
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〈Ax〉w =
Tr
(
P̂T (Â⊗ x̂) ρ̂

)
Tr
(
P̂T ρ̂

) , (D.5e)

〈
A2
〉w

=
Tr
(
P̂T (Â2 ⊗ 1̂d) ρ̂

)
Tr
(
P̂T ρ̂

) , (D.5f)

〈
p2
〉w

=
Tr
(
P̂T (1̂s ⊗ p̂2) ρ̂

)
Tr
(
P̂T ρ̂

) . (D.5g)

D.1 Detector Wigner Function

Assuming an initial product state ρ̂ = ρ̂i ⊗ ρ̂d, we can compute the operations

(D.2) as follows. After computing the detector trace in the p-basis and inserting

two complete x-basis sets, the Pλ operation takes the form

Pλ(ρ̂) =

∫∫∫
dpdxdx′

2π~
〈x′| ρ̂d |x〉 e−i

p
~ (x−x′−g ad∗[Â]+~λ)(ρ̂i), (D.6)

=

∫∫
dxdx′ 〈x′| ρ̂d |x〉 δ(x− x′ − g ad∗[Â] + ~λ)(ρ̂i),

=

∫
dz W̃d(z, g ad∗[Â]− ~λ)(ρ̂i).

Here we have changed integration variables to z = x − x′ and y = (x + x′)/2,

and have noted that W̃d(z, y) = 〈z − y/2| ρ̂d |z + y/2〉 is the Fourier-transformed

Wigner function of the detector (6.40).
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Performing a similar computation for Xλ yields,

Xλ(ρ̂) =

∫∫∫
dpdxdx′

2π~
1

2
(eiλx

′
+ eiλx) 〈x′| ρ̂d |x〉 e−i

p
~ (x−x′−g ad∗[Â])(ρ̂i), (D.7)

=

∫∫
dxdx′

1

2
(eiλx

′
+ eiλx) 〈x′| ρ̂d |x〉 δ(x− x′ − g ad∗[Â])(ρ̂i),

=

∫
dz eiλzW̃d(z, g ad∗[Â]) cos

(
λg

2
ad∗[Â]

)
(ρ̂i).

Taking derivatives with respect to (iλ) produces the expressions (6.41) in the main

text for the first moments. Setting λ = 0 in either Pλ(ρ̂i) or Xλ(ρ̂i) produces the

post-interaction reduced system state ρ̂′s = E(ρ̂i).

The operation ad∗[Â] is linear, so any analytic function of ad∗[Â] may be

defined via its Taylor series in the same manner as an analytic function of a

matrix. Indeed, to more rigorously perform the above derivations one can work in

the adjoint matrix representation discussed in Appendix A.7. After expanding the

expressions into the eigenbasis of the matrix of ad∗[Â] and regularizing any singular

functions into limits of well-behaved analytic functions, the above computations

can be performed for each eigenvalue, summed back into a matrix, and then

mapped back into the operator form shown. For unbounded Â then one must

also carefully track the domains to ensure that the resulting expressions properly

converge, as they should for any physically sensible result.

D.2 Hermite-Gauss superpositions

The Wigner distribution for an arbitrary superposition of Hermite-Gauss modes

|ψ〉 =
∑

m cm |hm〉 can be computed to find (suppressing arguments for compact-
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ness),

W =
∞∑

m,n=0

cmc
∗
n√

m!n!

(−1)m ei(m−n)φ

π~
Dm
n [
√

2G] e−G, (D.8)

where G(x, p) = x2/2σ2 + 2p2σ2/~2 and φ(x, p) = tan−1(−2pσ2/~x). The polyno-

mial sequence Dm
n (x) has the generating function,

exp(zz̄ − x(z − z̄)) =
∞∑

m,n=0

zmz̄n

m!n!
Dm
n (x), (D.9)

and the explicit form,

Dm
n (x) =

min(m,n)∑
k=0

m!n! (−1)m−k

(m− k)! (n− k)! k!
xm+n−2k. (D.10)

Notably, the diagonal elements of this sequence are the Laguerre polynomials,

Dm
m(x) = m!Lm(x2). These results can be obtained by using the generating func-

tion for the Hermite polynomials exp(2xz−z2) =
∑∞

n=0Hn(x)zn/n!, as well as the

identities Hn(x) = exp(−∂2
2x)(2x)n and

∫
dx e−x

2
Hn(x)Hm(x) = δm,nm!

√
π 2m.

Computing the reduced system state ρ̂′s using this Wigner function yields,

ρ̂′s =
∞∑

m,n=0

cmc
∗
n√

m!n!
Dm
n

[√
ε ad∗[Â]

]
eεL[Â](ρ̂s), (D.11)

where ε = (g/2σ)2, and L[Â] = ad∗[−iÂ]2/2 is the Lindblad decoherence opera-

tion. Notably, the functional form of the Wigner distribution (D.8) is still largely

preserved in Eq. (D.11).

The detector averages can also be computed from this Wigner function. The

weak value Re 〈x〉w will vanish by symmetry; the weak value Re 〈p〉w involves the
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derivative i~∂gad∗[Â]ρ̂
′
s; and, the weak value Re 〈A〉w involves the state ρ̂′s directly.

When cm = 1 with the rest of the coefficients zero, then these generalizations

reduce to the results (6.86) and (6.87) presented in the main text.
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