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We investigate the statistical arrow of time for a quantum system being monitored by a sequence of
measurements. For a continuous qubit measurement example, we demonstrate that time-reversed evolution
is always physically possible, provided that the measurement record is also negated. Despite this restoration
of dynamical reversibility, a statistical arrow of time emerges, and may be quantified by the log-likelihood
difference between forward and backward propagation hypotheses. We then show that such reversibility is
a universal feature of nonprojective measurements, with forward or backward Janus measurement
sequences that are time-reversed inverses of each other.
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The classical dynamics of a conservative system is time
reversible. If we watch a movie backward in the absence of
friction, it will show dynamics perfectly consistent with the
laws ofmotion, sowemay not distinguishwhetherwewatch
the movie forward or backward in time from the dynamics
alone. However, when the system has more than a few
degrees of freedom—such as during the starting break in a
gameof pool—then the likelihood that the evolution is either
forward or backward in time may differ, so it becomes
possible to distinguish an arrow of time statistically. The
existence of such an arrow of time is a fundamental question,
and has been of interest in many areas of physics [1–3].
The quantum dynamics of a conservative and unmeas-

ured system is similarly time reversible. For example,
the Schrödinger equation becomes invariant under time
inversion if the position-space wave function is complex
conjugated. This is a special case of a general antiunitary
time-reversal operation [4], and is sufficient to restore time
symmetry for a closed quantum system.
The introduction of a sequence of measurements seems

to break such dynamical symmetry, however, for two
distinct reasons. First, obtaining definite measurement
results traditionally collapses the wave function, which
produces nonunitary evolution that is distinct from the
Schrödinger equation and not reversed by the same anti-
unitary operation. Second, the randomness of each meas-
urement creates an intrinsic asymmetry between an
unknown future and a definite past. These reasons have
contributed to the view that quantum mechanics is funda-
mentally asymmetric in time [5,6].
We seek to clarify this apparent discrepancy between

classical and quantum reversibility. In the past, such efforts
to restore reversibility have tried reformulating quantum
mechanics in a more symmetric way [7]. For example,

the “two-time” formalism of Aharonov, Bergmann, and
Lebowitz [8] removes the indefiniteness of the future by
introducing a second boundary condition (or postselection)
that brackets a time interval, and avoids nonunitary state
collapse by considering infinitesimally weak measurements
that do not affect the state within that interval [9]. Physical
measurements have nonzero strength however, and so will
(at least partially) collapse the state and seemingly spoil the
reversibility of such a scheme [10]. Nevertheless, partial
collapses of the state may still be fully restored probabilisti-
cally (“wave function uncollapse”), even if the initial state
is unknown [11,12]. This uncollapsing phenomenon has
been confirmed experimentally in superconducting and
optical systems [13–15], which raises the question once
more whether the time symmetry of a sequence of several
such measurements could be similarly restored.
In this Letter, we demonstrate how to restore time-reversal

symmetry for a sequence of nonprojective measurements
that takes into account the insights from measurement
uncollapse. This is a nontrivial problem, since correlation
functions of even arbitrarily weak, ostensibly noninvasive,
measurements break time-reversal symmetry in general
[16,17]. We solve the general problem by considering two
complementary measurement sequences, one pointing into
the future, and another into the past, that are time-reversed
inverses of each other. We name these complements Janus
sequences. For qubits, this general solution takes a particu-
larly simple form that can be taken to the limit of time-
continuous measurements, producing so-called quantum
trajectories [18–23]. Quantum trajectory theory eliminates
any remaining separation between Schrödinger equation
dynamics and measurement disturbance, and replaces them
with a single stochastic process that includes both. In recent
years there has been strong experimental evidence in support
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of this type of conditional quantum dynamics; see, e.g.,
Refs. [24–29] for a sample of current works.
We pose the time-reversibility problem in the following

way: Suppose we are given a movie of stochastic quantum
state dynamics along with its associated noisy detector
output (a sort of “soundtrack” for the movie). We are then
asked to determine whether the movie shows the forward
evolution of the state, or whether the movie has been
reversed, as depicted in Fig. 1. In the simplest case of a
monitored qubit, we find that such a movie played back-
ward obeys time-reversed equations of motion if we also
flip the sign of its soundtrack (measurement record). We
stress that this is not a microscopic time reversal of the
measurement apparatus, nor is it a backward inference (past
quantum state) kind of dynamics [30,31]—our time rever-
sal shows equally valid forward dynamics. After watching
the movie for a longer duration while listening to its
soundtrack, we can distinguish a forward from a time-
reversed movie with increasing certainty in order to
probabilistically find the arrow of time.
The usual thermodynamic arrow of time refers to low

entropy configurations changing into high entropy under
the thermalization process (see, e.g., Ref. [32]). Our
quantum measurement arrow time is more similar to the
situation in nonequilibrium statistical physics. The time
arrow can be related to the distinguishability of the
distributions of quantities, such as work done between a
given process and its time reversed twin [33–35]. In such
situations the system entropy can even decrease [36].
However, these treatments typically have a temperature
associated with the environment, and the system begins in
equilibrium. In contrast, we consider a completely non-
equilibrium situation, where all fluctuations are fundamen-
tally quantum in nature arising from the measurement
process, with the system starting in an arbitrary state.

Note that to achieve perfect time reversal we must not
lose information to the environment, other than to an ideal,
quantum-limited, detector. That is, we must consider a
system that is being monitored without additional noise or
“quantum friction,” just as in classical physics. As a
physical example, a superconducting qubit like a transmon
[37] may be continuously monitored with microwaves
using circuit quantum electrodynamics [24,25], yielding
a time-dependent (noisy) homodyne quadrature readout
IðtÞ; such monitoring would yield time-reversible evolution
if the amplifier were quantum limited with no loss in the
readout chain (i.e., no readout inefficiency) [38], and were
otherwise decoupled from its environment. Similarly, the
current IðtÞ flowing through a quantum point contact can
continuously monitor a double-quantum dot charge qubit
with nearly quantum-limited efficiency [21,39,40].
Continuous qubit measurement.—We consider such a

quantum-limited continuous qubit measurement as an
illustrative example, which we will later generalize to an
arbitrary sequence of measurements. Specifically, contin-
uously monitoring the σz observable produces a noisy
informational signal rðtÞ, which is shifted and rescaled so
that its average is �1 if the quantum system is prepared in
eigenstates of σz. The stochastic nature of rðtÞ arises from
the intrinsic quantum fluctuations in the detector, e.g.,
quantum vacuum fluctuations [24], which sets the charac-
teristic measurement time τ for achieving unit signal-to-
noise ratio. We also consider a qubit Hamiltonian, given by
H ¼ ℏΩσy=2, produced (for example) by a microwave
drive, which causes rotation in the x-z plane of the Bloch
sphere.
Collecting a particular measurement trace from the

detector rðtÞ allows us to infer the conditional quantum
state as a function of time, fxðtÞ; yðtÞ; zðtÞg, from the Bloch
equations of motion,

_x¼ −Ωz−
xzr
τ

; _y¼ −
yzr
τ

; _z¼Ωxþ ð1− z2Þr
τ

;

ð1Þ

also known as a quantum trajectory. These equations
assume ideal conditions, including efficient detection and
Markovian evolution, so any residual entanglement
between the qubit and detection apparatus is assumed to
vanish (e.g., a microwave resonator must operate in the
“bad cavity” limit). For nondifferentiable rðtÞ, these equa-
tions remain valid as stochastic differential equations
with time-symmetric (Stratonovich) derivatives [21]. We
observe that Eqs. (1) are time-reversal invariant under the
transformations: t ↦ −t, Ω ↦ −Ω, keeping x, y, z invari-
ant, provided that the record is also flipped, r ↦ −r. With
these changes, a quantum movie for a single measurement
run is the same when played backward, as illustrated
in Fig. 1 for the special case of y ¼ 0, thus restoring
time symmetry. Specifically, a forward trajectory with

FIG. 1. A single quantum trajectory of a continuously moni-
tored qubit. The x and z Bloch sphere coordinates of a qubit
change due to both unitary and measurement dynamics. The red
and blue colors denote positive and negative values of the x
coordinate. The boundary states are shown as green and red
dots. Is time running forward with measurement record rðtÞ or
backward with flipped record ~rðtÞ?
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initial state ρi ≔ ðxi; yi; ziÞ at time t ¼ 0, final state ρf ≔
ðxf; yf; zfÞ at time t ¼ T, and record rFðtÞ is equivalent to a
backward trajectory with initial state ρf, final state ρi, and
reversed record rBðtÞ ¼ −rFðT − tÞ [41].
Arrow of time.—We will now show that although such

continuous qubit measurement dynamics is time-reversal
invariant, we can nevertheless probabilistically distinguish
forward and backward evolution, yielding a statistical
arrow of time. The task of distinguishing a past-to-future
versus a future-to-past dynamics can be phrased as a
hypothesis testing problem: is the movie shown in Fig. 1
of duration T running forward (F) or backward (B)?
To test these hypotheses, let the prior probabilities PðFÞ

and PðBÞ ¼ 1 − PðFÞ indicate our initial guess whether the
movie is running forward or backward. Let PF½rðtÞ� ¼
P½rðtÞjρi� be the probability density of obtaining the
measurement record rðtÞ, supposing the movie is running
forward from an initial state ρi; similarly, let PB½rðtÞ� ¼
P½−rðT − tÞjρf� be the probability density that supposes
the movie is running backward from a final state ρf. We
then use Bayes’ rule to compute the likelihood that the
movie is running in the forward direction given the movie
and its soundtrack,

P½FjrðtÞ� ¼ PF½rðtÞ�PðFÞ
PF½rðtÞ�PðFÞ þ PB½rðtÞ�PðBÞ

: ð2Þ

If we have no a priori bias about this question, we set
PðBÞ ¼ PðFÞ ¼ 1=2, to find the likelihood

P½FjrðtÞ� ¼ R
1þR

; R ¼ PF½rðtÞ�
PB½rðtÞ�

: ð3Þ

We therefore conclude that we can make no statistical
inference only if the forward and backward probability
densities are identical (i.e., the probability ratio R ¼ 1).
The logarithm of this ratio, lnR, is thus a natural
discriminator, with positive values inferring forward
motion and negative values inferring backward motion.
The mean value lnR over forward-generated trajectories
thus gives an estimate of the statistical arrow of time for
continuous quantum measurement, also named the “length
of time’s arrow” [42]. It is similar to the relative entropy
(also known as the Kullback-Leibler divergence) between
forward and backward distributions. Researchers in non-
equilibrium statistical physics have used analogous arrow-
of-time hypothesis discrimination to quantify the entropy
production (or irreversibility) of mesoscopic systems
[34,42–45]. There has been recent cross-pollination of
the methodology in these fields [46,47].
To find the relative probability densities of the trajectories

rðtÞ versus −rðT − tÞ, given a quantum trajectory, we may
expand the distribution of results to first order in a small
time-step to find P½rðtÞjρi� ∝ expf− R

T
0 dt0½rðt0Þ2 −

2rðt0Þzðt0Þ þ 1�=2τg [48,49], where the backward

distribution simply time reverses the integral, and flips
the sign of r at every time [50]. The arrow of time ratio
R Eq. (3) is given in terms of the probability densities of the
forward trajectories rðtÞ and the backward trajectories
−rðT − tÞ, so [50]

lnR ¼ 2

τ

Z
T

0

dtrðtÞzðtÞ: ð4Þ

This relative log-likelihood will then categorize each run of
the experiment as beingmore likely to be running forward in
time, lnR > 0, or backward in time, lnR < 0. In the latter
case, we interpret Eq. (4) to mean that the result rðtÞ
“disagrees” with the state component zðtÞ it is estimating
(has the opposite sign) more often than it “agrees” with it
during the run, making reversed time evolution more likely.
In the Markovian limit, applicable on a time scale longer

than any correlation of the detector or detector resolution
time, the detector fluctuations may be approximated as an
additive white noise stochastic process [12,21,23], with the
detector output signal given by rðtÞ ¼ zðtÞ þ ffiffiffi

τ
p

ξðtÞ,
where ξðtÞ is a unit variance, delta-correlated stochastic
variable. This decomposition clearly shows the breaking of
time-reversal symmetry on the statistical level, since
inverting the sign of r while keeping z invariant requires
a statistically anomalous time-reversed realization of the
noise. Using this decomposition, the average of the relative
log-likelihood in Eq. (4) may be calculated to give the
positive-definite value lnR ¼ ð1=τÞ R T

0 dtð1þ hzðtÞ2iÞ
after the stochastic average (see Supplemental Material
[51]), indicating a forward time arrow.
Numerical results for the arrow of time.—Consider the

case of persistent, diffusive, Rabi oscillations [55], when
Ω ≫ τ−1, so that the qubit performs oscillations in the x-z
plane with phase diffusion. For T > 2π=Ω, the Rabi
oscillations average to hz2i ≈ hðcosΩtÞ2i ¼ 1=2, so

lnR ≈
3T
2τ

: ð5Þ

In this case, the average distinguishability of the forward
from the backward arrow of time increases linearly with the
duration of the measurement run.
This statement may be made more precise by examining

the entire distribution of lnR, which is shown from
numerical simulations in Fig. 2 using a Rabi period of
2π=Ω ¼ 0.5τ. For durations longer than the Rabi period,
T > 2π=Ω, the mean grows linearly with the duration of the
experiment, as predicted in (5). A calculation similar to the
mean gives an approximate variance of 2T=τ. The full
distribution of lnR becomes a broad Gaussian in this
regime of T > 2π=Ω, with the aforementioned mean and
variance, see Figs. 2(c) and 2(d). Thus, the probability of
erroneously guessing a forward trajectory to be backward is
the area of the negative tail of the Gaussian
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Perr ≈
1

2

�
1 − Erf

�
3

4

ffiffiffiffi
T
τ

r ��
: ð6Þ

Consequently, if we wish to distinguish the forward-in-time
arrow from the backward arrow to greater than n standard
deviations, we require a duration T ≥ 8n2τ=9. As can be
seen from the histograms in Fig. 2, even for reasonably long
durationT it is common to observe readouts that appear to be
reversed. We show examples of this, as well as present the
simpler no-drive case, in the Supplemental Material [51].
Janus measurement sequences.—We now generalize the

simple qubit example to arbitrary sequences of generalized
measurements. First, we reverse the direction of time for
Schrödinger equation evolution in the standard way [56],
by introducing an antiunitary time-reversal operation Θ,
satisfying hΘΦjΘΨi ¼ hΨjΦi. In the case of position wave
functions, Θ is simply the complex conjugate operation.
More generally, Θ must correctly time reverse all physical
observables such as position, ΘxΘ−1 ¼ x, momentum
ΘpΘ−1 ¼ −p, and spin ΘSΘ−1 ¼ −S, as well as the sign
of any external magnetic field, B → −B. Applying the
time-reversal operator Θ to a quantum state jΨðtÞi inverts
its temporal meaning, such that forward unitary time
evolution Ut correctly rewinds the dynamics: UtΘjΨðtÞi ¼
ΘjΨð0Þi.

Second, we add sequences of generalized measurements
to the unitary dynamics. We first consider a forward
sequence of measurements in time, A;B;C;…, which will
be one of two distinct Janus sequences that we will
need. This sequence has possible measurement results
j ¼ a; b; c;…, each of which will partially collapse the
quantum state according to a measurement operator,
Ma;Mb;Mc;…. An initial state jΨi thus evolves into

jΦi ∝ …McMbMajΨi≡MFjΨi; ð7Þ

where MF ≡…McMbMa. Note that we include any
intermediate unitary time evolution Ut inside the Kraus
operators. This formulation is quite general, so the meas-
urement results may be discrete or continuous variables.
We next introduce a corresponding backward Janus

sequence, which is a series of (in general different)
measurements A0; B0; C0;…, with outcomes j0 ¼
a0; b0; c0;… and Kraus operators MB ≡Ma0Mb0Mc0… also
applied sequentially to the system, but in reverse order to
the time-reversed “initial” state ΘjΦi. Crucially, for some
possible results ðj; j0Þ of both sequences, we wish for the
system state to rewind its path, restoring the initial
(time-reversed) state: MBΘjΦi ∝ ΘjΨi. We can find the
condition for this to happen by inserting 1 ¼ Θ−1Θ
between every pair of operators, yielding

Mj0 ∝ ðΘMjΘ−1Þ−1; ðj; j0Þ ¼ ða; a0Þ; ðb; b0Þ;…: ð8Þ

That is, each measurement operator of the backward Janus
sequence must be proportional to the inverse time-reversed
measurement operator of the forward Janus sequence. In
the special case of no measurement collapse, this constraint
correctly reproduces the expected relationship between the
unitary time-evolution operators and the antiunitary time-
reversal operators [7,56]. For a single measurement, this
condition may be understood as an application of quantum
measurement uncollapse [11–15]. We emphasize that such
an inverse operator may always be constructed as a
measurement operator belonging to some positive operator
valued measure (POVM) set [12] (see Ref. [57] for an
introduction to generalized measurements). As alluded to
above, there is no guarantee that the correct Janus sequen-
ces will happen; however, what is important is that such a
pair of sequences is physically possible.
Switching from a forward to a backward Janus sequence

generalizes the need for inverting the measurement record
rðtÞ in the qubit case of Fig. 1. Now consider the analogous
game, where a movie of the state dynamics from one of a
Janus sequence of measurements is presented to us, along
with a corresponding sequence of forward measurements
ðA;B; C;…Þ, or backward measurements ð…; C0; B0; A0Þ.
We must then guess whether the movie with one of these
two soundtracks is running backward or forward in time.
There is noway to tell from the dynamics: Each step in each

FIG. 2. Histograms of lnR for 2 × 106 runs of monitored Rabi
oscillations with period 2π=Ω ¼ 0.5τ and measurement time τ,
starting from xðt ¼ 0Þ ¼ 1. The ratio of forward to backward
probability distributions R discriminates the likelihood for a
trajectory to be forward (lnR > 0) or backward (lnR < 0).
The probability Perr of erroneously guessing reversed time is
the red shaded area to the left of the vertical dashed line at
lnR ¼ 0. The vertical solid line is the mean lnR, a measure of the
statistical arrow of time. The durations T ¼ ð0.02; 0.2; 1.18; 2.0Þτ
are shown in subfigures (a)–(d), showing that for T ≥ 2π=Ω (c),
(d), the distribution has converged to a Gaussian with mean 3T=2τ
and variance 2T=τ [dashed profile in (b),(c),(d)].
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quantum state movie direction with matched soundtrack is
a possible forward evolution.
Nevertheless, as with qubit the case before, we can still

statistically discern the arrow of time. The likelihood
functions to test the forward or backward hypotheses are
constructed directly from the collective forward Janus
measurement operator MF ¼ Q

jMj, and collective back-
ward Janus measurement operator MB ¼ Q

j0Mj0, as used
above. The probability of all of the measurement results,
given (known) forward or reverse Janus sequences
is PFða; b; c;…Þ ¼ ∥MFjΨi∥2, or PBð…; c0; b0; a0Þ ¼
∥MBΘjΦi∥2, so the discriminator that generalizes
Eq. (3) is the log of their ratio R ¼ PFðfjgÞ=PBðfj0gÞ.
Conclusions.—We find that it is possible to time-reverse

the dynamics of a quantum system, even when it is being
measured. For every nonprojective measurement, the for-
ward measurement dynamics has an associated backward
measurement dynamics. Therefore, given a sequence of
measurements and the quantum state trajectory (“the
movie”), it is impossible to say whether the movie is being
played forward or backward from dynamics alone.
However, by examining the relative probability of whether
the movie is playing forward or backward, given the
measurement results (its “soundtrack”), a statistical arrow
time still emerges. The physical origin of this statistical
arrow is the dynamical contraction (collapse) of the set of
possible final states that are compatible with the observed
measurement record. Of the two possible evolutions, one
will display a more likely contractive evolution. We have
shown how to test both aspects of the time-arrow question
both in continuously measured qubits, as well as any
measurement sequence by constructing a backward
Janus sequence which would show a possible time-reversed
quantum state movie consistent with the original measure-
ment sequence.
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