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SUPPLEMENTARY MATERIAL

Detector Moments

All detector moments can be determined through con-
ditioned characteristic functions,

〈
eiλx

〉
f

=
Tr[(P̂f ⊗ eiλx̂) Ûgρ̂SDÛ

†
g ]

Tr[(P̂f ⊗ 1̂D) Ûgρ̂SDÛ
†
g ]
, (1a)

=
TrS [P̂f e

iλgÂ Xλ(ρ̂SD)]

TrS [P̂f ρ̂′S ]
,

〈
eiλp

〉
f

=
Tr[(P̂f ⊗ eiλp̂) Ûgρ̂SDÛ†g ]

Tr[(P̂f ⊗ 1̂D) Ûgρ̂SDÛ
†
g ]
, (1b)

=
TrS [P̂f Pλ(ρ̂SD)]

TrS [P̂f ρ̂′S ]
,

where we have used the Weyl relation [1], eiax̂e−ibp̂/~ =
eiabe−ibp̂/~eiax̂, and have defined the post-interaction re-
duced state ρ̂′S = TrD[Ûgρ̂SDÛ

†
g ], as well as the λ-

dependent operations,

Xλ(ρ̂SD) =
1

2
TrD[Ûg(e

iλx̂ρ̂SD + ρ̂SDe
iλx̂)Û†g ], (2a)

Pλ(ρ̂SD) =
1

2
TrD[Ûg(e

iλp̂ρ̂SD + ρ̂SDe
iλp̂)Û†g ], (2b)

Computing derivatives of the characteristic functions
produces the conditioned detector moments,

〈xn〉f =
∂n

∂(iλ)n
〈
eiλx

〉
f

∣∣∣
λ=0

, (3a)

〈pn〉f =
∂n

∂(iλ)n
〈
eiλp

〉
f

∣∣∣
λ=0

. (3b)

This procedure is similar in spirit to the full counting
statistics approach employed in [2].

The first two moments are given explicitly by,

〈x〉f = Re 〈x〉w + gRe 〈A〉w , (4a)

〈p〉f = Re 〈p〉w , (4b)〈
x2
〉

f
= Re

〈
x2
〉w

+ 2gRe 〈xA〉w + g2 Re
〈
A2
〉w
, (4c)〈

p2
〉

f
= Re

〈
p2
〉w
, (4d)

in terms of the Heisenberg evolved joint post-selection
P̂ ′SD = Û†g (P̂f ⊗ 1̂D)Ûg and the joint weak values,

〈x〉w =
Tr[P̂ ′SD (1̂S ⊗ x̂) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
, (5a)

〈A〉w =
Tr[P̂ ′SD (Â⊗ 1̂D) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
, (5b)

〈p〉w =
Tr[P̂ ′SD (1̂S ⊗ p̂) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
, (5c)

〈
x2
〉w

=
Tr[P̂ ′SD (1̂S ⊗ x̂2) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
, (5d)

〈Ax〉w =
Tr[P̂ ′SD (Â⊗ x̂) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
, (5e)

〈
A2
〉w

=
Tr[P̂ ′SD (Â2 ⊗ 1̂) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
, (5f)

〈
p2
〉w

=
Tr[P̂ ′SD (1̂S ⊗ p̂2) ρ̂SD]

Tr[P̂ ′SD ρ̂SD]
. (5g)

Detector Wigner Function

Assuming an initial product state ρ̂SD = ρ̂S ⊗ ρ̂D, we
can compute the operations (2) as follows. After com-
puting the detector trace in the p-basis and inserting two
complete x-basis sets, the Pλ operation takes the form

Pλ(ρ̂SD) =

∫∫∫
dpdxdx′

2π~
〈x′|ρ̂D|x〉

e−i
p
~ (x−x′−g ad[Â]+~λ)(ρ̂S), (6)

=

∫∫
dxdx′ 〈x′|ρ̂D|x〉

δ(x− x′ − g ad[Â] + ~λ)(ρ̂S),

=

∫
dz W̃D(z, g ad[Â]− ~λ)(ρ̂S).

Here we have changed integration variables to z = x−x′
and y = (x + x′)/2, and have noted that W̃D(z, y) =
〈z − y/2|ρ̂D|z + y/2〉 is the Fourier-transformed Wigner
function of the detector.

Performing a similar computation for Xλ yields,

Xλ(ρ̂SD) =

∫∫∫
dpdxdx′

2π~
1

2
(eiλx

′
+ eiλx)〈x′|ρ̂D|x〉

e−i
p
~ (x−x′−g ad[Â])(ρ̂S), (7)

=

∫∫
dxdx′

1

2
(eiλx

′
+ eiλx)〈x′|ρ̂D|x〉

δ(x− x′ − g ad[Â])(ρ̂S),

=

∫
dz eiλzW̃D(z, g ad[Â]) cos

(
λg

2
ad[Â]

)
(ρ̂S).

Taking derivatives with respect to (iλ) produces the ex-
pressions in the main text for the first moments. Setting
λ = 0 in either Pλ(ρ̂S) or Xλ(ρ̂S) produces the post-
interaction reduced system state ρ̂′S .

The operation ad[Â] is linear, so any analytic func-
tion of ad[Â] may be defined via its Taylor series in the
same manner as an analytic function of a matrix. In-
deed, to more rigorously perform the above derivations
one can exploit an isomorphism that maps ρ̂S into a vec-
tor and ad[Â] into a matrix acting on that vector. After
expanding the expressions into the eigenbasis of the ma-
trix of ad[Â] and regularizing any singular functions into
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limits of well-behaved analytic functions, the above com-
putations can be performed for each eigenvalue, summed
back into a matrix, and then mapped back into the op-
erator form shown. For unbounded Â then one must
also carefully track the domains to ensure that the re-
sulting expressions properly converge, as they should for
any physically sensible result.

Hermite-Gauss superpositions

The Wigner distribution for an arbitrary superposition
of Hermite-Gauss modes |ψ〉 =

∑
m cm|hm〉 can be com-

puted to find (suppressing arguments for compactness),

W =

∞∑
m,n=0

cmc
∗
n√

m!n!

(−1)m ei(m−n)φ

π~
Dm
n [
√

2G] e−G, (8)

where G(x, p) = x2/2σ2 + 2p2σ2/~2 and φ(x, p) =
tan−1(−2pσ2/~x). The polynomial sequence Dm

n (x) has
the generating function,

exp(zz̄ − x(z − z̄)) =

∞∑
m,n=0

zmz̄n

m!n!
Dm
n (x), (9)

and the explicit form,

Dm
n (x) =

min(m,n)∑
k=0

m!n! (−1)m−k

(m− k)! (n− k)! k!
xm+n−2k. (10)

Notably, the diagonal elements of this sequence are
the Laguerre polynomials, Dm

m(x) = m!Lm(x2).
These results can be obtained by using the generat-
ing function for the Hermite polynomials exp(2xz −
z2) =

∑∞
n=0Hn(x)zn/n!, as well as the identities

Hn(x) = exp(−∂22x)(2x)n and
∫
dx e−x

2

Hn(x)Hm(x) =
δm,nm!

√
π 2m.

Computing the reduced system state ρ̂′S using this
Wigner function yields,

ρ̂′S =

∞∑
m,n=0

cmc
∗
n√

m!n!
Dm
n

[√
ε ad[Â]

]
eεL[Â](ρ̂S), (11)

where ε = (g/2σ)2, and L[Â] = −ad2[Â]/2 is the Lind-
blad decoherence operation. Notably, the functional form
of the Wigner distribution (8) is still largely preserved in
Eq. (11).

The detector averages can also be computed from this
Wigner function. The weak value Re 〈x〉w will vanish by
symmetry; the weak value Re 〈p〉w involves the derivative
i~∂gad[Â]ρ̂

′
S ; and, the weak value Re 〈A〉w involves the

state ρ̂′S directly. When cm = 1 with the rest of the
coefficients zero, then these generalizations reduce to the
results presented in the main text.
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