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Strengthening weak measurements of qubit out-of-time-order correlators
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For systems of controllable qubits, we provide a method for experimentally obtaining a useful class of multitime
correlators using sequential generalized measurements of arbitrary strength. Specifically, if a correlator can be
expressed as an average of nested (anti)commutators of operators that square to the identity, then that correlator can
be determined exactly from the average of a measurement sequence. As a relevant example, we provide quantum
circuits for measuring multiqubit out-of-time-order correlators using optimized control-Z or ZX-90 two-qubit
gates common in superconducting transmon implementations.
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I. INTRODUCTION

Out-of-time-ordered correlators (OTOCs) have seen a surge
of interest in recent literature due to their apparent connection
to information scrambling in many-body quantum systems
[1-29]. Prototypical systems that exhibit efficient scrambling,
such as black holes, are out of reach for experimental verifi-
cation, but it is still possible to simulate scrambling dynamics
in the laboratory using controllable systems of qubits [30-34].
For such a simulation, an OTOC could serve as a scrambling
witness. As such, there is a growing interest in measuring
OTOC:s for qubit systems straightforwardly.

In this paper, we extend previous work [35,36] that outlines
how an OTOC may be determined from a sequence of weak
measurements. Such weak measurements have two shortcom-
ings. First, they require significant data collection to over-
come statistical noise. Second, they assume that backaction
perturbation terms are small enough to neglect, which may be
difficult to achieve experimentally. Indeed, recent experiments
have found that strengthening weak measurements of other
complex quantities like weak values [37,38] dramatically
improves the accuracy of their estimation [39,40]. To achieve
similar benefits, we improve upon the sequential-measurement
method by eliminating the need for weak measurements. We
show how OTOCs may be exactly determined from simple
averages of measurement sequences of any strength, including
standard nondemolition projective measurements.

This remarkable simplification for obtaining OTOCs with
measurement sequences is restricted to observables that square
to the identity, which form a useful class of observables. Many
existing OTOC works consider observables with precisely this
structure [16,41-46]. Such observables can have only two
distinct subspaces, associated with the eigenvalues £1, and
so are natural observables to consider for practical circuit
simulations using qubits. For example, the OTOC for two
single-qubit observables that lie at opposite ends of a spin
chain undergoing nonintegrable dynamics would be a natural
short-term experimental goal [31,35,36,47-49].

More generally, our improved method enables the ex-
act measurement of the expectation values of nested
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(anti)commutators of observables that square to the identity.
Due to this generality, our method encompasses many quanti-
ties that may be of potential interest outside the field of OTOC:s.
We show that two-point time-ordered correlators (TOCs) and
four-point OTOC:s are special cases of this nested structure and
provide example circuits for how to measure these quantities.

Since TOCs and OTOCs are complex, we use qubit mea-
surements of two canonical types to isolate their real and imagi-
nary parts separately: informative measurements with collapse
backaction and noninformative measurements with unitary
backaction. Targeting superconducting transmon qubits, we
provide ancilla-based quantum circuits for implementing the
two canonical qubit measurements needed to obtain the cor-
relators. Our implementations use gates consistent with con-
temporary hardware and generalize experimentally prototyped
methods [50-52].

This paper is organized as follows. In Sec. II we detail
the needed qubit measurement circuits and derive the general
method for obtaining nested (anti)commutator averages, with
supplementary details provided in the Appendix. In Sec. IIl we
specialize the general result to two-point TOCs and four-point
OTOCs. We summarize in Sec. IV.

II. MEASURING QUBIT (ANTI)COMMUTATORS

Consider a system of controllable qubits that can be pairwise
coupled with an entangling gate, assumed to be optimized for
a particular hardware architecture. For concreteness, we target
an array of superconducting qubits, such as transmons [53,54].
Standard transmon measurements couple to the energy basis
as the computational basis such that the ground state is |0)
and the first excited state is |1). The qubit Pauli observables
are defined as Z = |1)(1] — |0)(0], ¥ = —i [1)(0] 4 i [0)(1],
and X = [1)(0] 4 |0)(1], with respective eigenstates |z1) =
[1/0), [y£) = (1) £ [0))/+/2, and |x=£) = (|1) £10))/+/2.
As a cautionary note, this superconducting-qubit convention
is opposite the quantum-computing convention for 0 and 1,
to allow a qubit Hamiltonian to be written naturally as ﬁq =
E{ |1){(1| + Ey|0){0] = hwq(2/2) + E1, with positive qubit
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FIG. 1. (a) Quantum circuit using an optimized control-Z (CZz) entangling gate to implement the generalized A measurement M (A)

[cos(¢/2)1 —(=1) s1n(¢/2)A]/f The (potentially n-qubit) unitary gate U, is chosen so that U, ZUJ\ = Aonthe target qubits. The y- rotatlon
gate R, (p) = exp[—i(p/2)Y¥] rotates the ancilla qubit through an angle ¢ in the xz plane of the Bloch sphere. (b) Bloch-xz-plane detail of
the ancilla evolution, showing each possible ancilla state in the entangled superposition as a distinct colored arrow. The ancilla z-measurement
resulta = 0, 1 is correlated with the eigenstates of the observable A, with perfect correlation when ¢ = /2. This correlation results in a partial
collapse into the A eigenstates. For any correlation strength ¢, the observable’s expectation value can be determined empirically by averaging
the scaled values ay , = (—1)**!/ sin ¢ due to the operator identity >, @, M;fj’M;f‘; =A.

frequency w, = (E; — Eo)/hi > 0, and energy offset E = measurement that causes a partial collapse onto the basis of A

(E| + Ep)/2 at the mean qubit energy (and usually omitted).
For simplicity, we assume that higher-energy levels outside the
qubit subspace may be safely neglected.

We assume that the single-qubit gates at our disposal will be
the three basic rotations I%x () = exp[—i(¢>/2)f(], I%(qb) =
exp[—i(¢/2)Y], and R.(¢) = exp[—i(¢/2)Z]. These are typ-
ically implemented with optimized microwave pulses reso-
nant with the qubit frequency [53] or with a flux-bias line
that tunes the qubit energy [54]. We also assume that a
particular two-qubit entangling gate has been optimized to
match the chip geometry. We consider both the control-Z (CZ)
gate [55,56] CZ = |1)(1| ® Z + +10)(0| ® 1 and the ZX- 90
(cross-resonance) gate [57,58] ZX90 = exp(—z(n/4)Z R X)
as the most actively used two-qubit gates for superconducting
transmon chips.

Our task is to measure multitime correlators, such
as two-point TOCs (B(t)A(O)) o or four-point OTOCs
(Wi VI0)W(t)V(0)),. We will show that these correla-
tors can be obtained exactly using temporal sequences of
generalized measurements of any strength. Such a correlator
generally has real and imaginary parts, which must be mea-
sured separately. To access both parts of such a correlator, we
need two canonical types of measurement that probe the dual
aspects of a (dimensionless) observable A: (1) an informative

(a) n qubits
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FIG. 2. (a) Quantum circuit using a Cz gate to implement the noninformative generalized A measurement N;,Aa)

(ﬂ/2>HRm(n/2)|_\_L/==a =0,1

and (ii) a noninformative measurement that causes a stochastic
unitary rotation generated by A. It will become clear how
these measurements enable access to real and imaginary parts,
respectively, of a correlator.

A. Canonical qubit measurements

As detailed in the Appendix, provided that an n-qubit
operator A squares to the identity A2=1 (e.g., as used
in [16,31,35,36,41-49]), both types of A measurement can
be implemented using a standardized coupling to a single
ancilla qubit. Such an observable has only two eigenspaces
corresponding to eigenvalues of £1 and so naturally maps onto
the two eigenstates of the ancilla qubit. We provide implemen-
tation circuits using a CZ gate in Figs. 1 and 2 (see also [50-52])
as well as implementation circuits using a ZX-90 gate in Figs. 3
and 4. Both gate implementations yield the same entangled
system-ancilla joint state prior to the ancilla collapse.

These procedures’ backaction on the system can be com-
pactly described by linear Kraus operators [59]. Below we
derive these Kraus operators from minimal descriptions of
Figs. 1-4.

(i) Informative measurement of A. Prepare the ancilla in the
|x—) state, perform an A-controlled y rotation of the ancilla

(b)
a=1
X measure z
a=0

additional gate rotates A correlation to zy-plane
z-measurement yields only unitary backaction

[cos(¢/2)1 +

i(—1)*sin(¢/ 2)A] / V2, for comparison with Fig. 1. The only difference is the added x-rotation gate R.(x /2) = exp[—i(w /4)X ] that rotates
the ancilla qubit through an angle /2 in the yz plane. (b) Bloch-xz-plane detail of the ancilla evolution. The added rotation moves the A
correlation to the xy plane, so the z-measurement result a = 0, 1 is no longer informative. Despite the lack of correlation, each result a enacts
a conditional unitary, generated by A, on the target.
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FIG. 3. (a) Quantum circuit using an optimized ZX oy (ZX-90) entangling gate to implement the generalized A measurement Md()Aa) , for

contrast with Fig. 1. (b) Bloch-xz-plane detail of the ancilla evolution.

through an angle ¢, and then measure the ancilla in the z basis
15 = (2| exp(—i(@/2)A ® V) |x—)

e I T
= E[COS 51 =+ sin EA:| (1)

(ii) Noninformative measurement of A. Prepare the ancilla
in the |x—) state, perform an A-controlled y rotation of the
ancilla through an angle ¢, and then measure the ancilla in the
y basis

V) = (v exp(—i(p/2)A ® 7) x—)

= % |:cos %i Fisin %A}eii”/4. (2)
The initial |x —) state ensures that a positive measurement result
correlates with the positive eigenspace of A after a positive
rotation angle ¢ in the informative case (e.g., see Fig. 1). For
clarity, we now replace the £ notation with explicit labels,
e.g., 1l — (=D with a € {0, 1}, which will indicate the
experimental outcome obtained when measuring the indicated
ancilla basis.

The informative measurement M é )isa nonunitary partial
projection with a coupling-strength angle ¢ € (0, 7/2] that
ranges from a near-identity transformation (¢ =~ 0) to a full
projection (¢ = 77/2). That the latter is projective follows from
the condition A2 = 1, which implies A=TI, —Tl_and1 =
I1, + I1_ for eigenprojections I1. of A. In contrast, the non-
informative measurement A, qua) is a measurement-controlled

unitary rotation, generated by A, which is determined by the
same ¢ € (0, w /2], ranging from a negligible rotation (¢ =~ 0)
to a maximal phase difference of = (¢ = 7/2). This noninfor-
mative case is similar to a stochastic unitary rotation. However,
the experimenter knows, through the result @, which of the
possible unitaries occurs. For example, stochastic trajectories

(a) n qubits
unitaries select eigenbasis of A

ﬁs{ : '
Ua Ul

ancilla
qubit

|OHB,(r/2HR: (—

(A  unitary
N ¢,a backaction

HR (xr/2){Ro(r/2\ =0 = 0,1

of a superconducting qubit undergoing a sequence of noninfor-
mative measurements (also known as phase backaction [60])
may be unitarily reversed with appropriate feedback [61,62]. In
both the informative and the noninformative case, ¢ € (0, /2]
conveniently parametrizes the measurement strength, allowing
the tuning of the system backaction from weak (¢ & 0) to

strong (¢ = 7 /2).

B. Qubit measurement identities

These canonical qubit measurements result in several
remarkable identities, which follow from the properties in
Egs. (A10), (A20), and (A21), derived in the Appendix. First,
we define the rescaled value that the experimenter should
assign each observed ancilla outcome a € {0, 1},

(_ 1 )a-H
sing
The values a4 , act as generalized eigenvalues of the observ-

able A [63,64]. Thatis, A can be decomposed into the positive-
operator-valued measure for the informative measurement

D M

a=0,1

3)

Up.a

(A)M(A) A. 4)

As a particularly important special case, when ¢ = 7 /2, the
values atz/2 4 = (=D reduce to the eigenvalues and the
measurements are projective with M;T%a = I1,.

Since the probability of observing an outcome a is P(a) =
Tr(M T(A)M 5 . 0), the expectation value of A may be approxi-
mated by averaglng the generalized eigenvalues over n trials of
the experiment, Y }_| @y o /n —>nooo Iy ¥p.aP(a) = (A).
The mean-square error of this approximation is Y ,_, (.4, —
(A /n* < 4, ag,/m/n=1/n sin ¢) since g, is
the same for all a, which gives an upper bound on the root-
mean-square (rms) error of 1/./n|sin¢| for the estimated

b
v 2 m Z a=1

x measure z

a=0

additional gate rotates A correlation to zy-plane
z-measurement yields only unitary backaction

FIG. 4. (a) Quantum circuit using a ZX-90 gate to implement the noninformative generalized A measurement N ‘4 for comparison with

Fig. 2. (b) Bloch-xz-plane detail of the ancilla evolution.

¢.a°

012132-3



JUSTIN DRESSEL et al.

PHYSICAL REVIEW A 98, 012132 (2018)

mean. Strong measurements with ¢ = 7 /2 have the smallest
rms error. To guarantee the same rms error as for n strong
measurement trials, less strong measurements with ¢ < /2
require 72/ sin ¢ trials, but also disturb the state correspond-
ingly less.

Typically, determining complex quantities like operator
correlators requires the use of weak measurements (¢ ~ 0)
to prevent state disturbance [36,37]. In special cases, how-
ever, relevant information may still be contained in the col-
lected measurement statistics in spite of any state disturbance
[39,40,65]. In the Appendix, we show that this is the case
for qubits, where the following remarkable identities hold for
any coupling-strength angle ¢ and thus enable the improved
correlator measurement protocols that are detailed in the
following sections: (a) the anticommutator identities

ip
> et pin ) = 1200 (52)
a=0,1
N B A
3 apattl OBt = 22 (5b)
a=0,1

and (b) the commutator identities

O A XY [A7 ﬁ]
> apaNgapNy = = (6a)
a=0,1
B, A
3wy NJVBR) % (6b)
a=0,1

We show both the Schrodinger picture state-update forms and
the Heisenberg picture operator-update forms for completeness
and later convenience. For the projective case of ¢ = 7 /2, any
nondemolition projective measurement may be substituted for
the ancilla measurements, making the above identities widely
applicable.

These key results show that both generative aspects of an
observable A can be probed directly using its generalized
eigenvalues: anticommutators generate nonunitary collapse
backaction, while commutators generate unitary rotation back-
action. We will see that the anticommutators can be used to
obtain the real parts of operator correlators, while the com-
mutators will additionally be needed to obtain the imaginary
parts.

C. Measurement sequence identities

Consider a sequence of m canonical system-qubit mea-
surements implemented with the ancilla-based procedures
established above. For each measurement kK =1, ..., m, an
ancilla k will couple to an observable A;, which may differ
from other observables in the sequence. Depending on the basis
measured on ancilla k, obtaining the result a; € {0, 1} will

produce an effect K ;ﬁka) €M (’:ka)k (fka)k} The probability of

observing a particular sequence of results (ay, . . ., a,, ) has the
form
_ o (Am) (A1) Apt(A) | p1(An)
Play,...,an) = Tr(K¢m~,am ’ K¢1 al'OK¢1 a K¢uuam)'

)

That is, the measurement effects stack in a nested way.

Our main result is that, averaging the generalized eigenval-
ues g, 4, forasequence of informative (noninformative) qubit-
observable measurements M, éA‘a)k (N, (;?Z) ) yields an expectation
value of nested anticommutators (commutators) involving the
measured observables. That is, averaging all M, ;f‘ll)k measure-

ments yields

Y g, Pl an)
ai,...,an €{0,1}
:<{ {{A'”’A’”zl,i’?'“} ’A'}>, )
p

while replacing the first measurement with N x‘&)] yields

Z Ao, ,a "'ad)m,a,,,P(élw--’am)
ai,..., a,€{0,1}
[' o {{Am7 AAm—l}v AAm—Z} T Al]
= — .0
2m=2(2})
p

Similarly, any mixture of M ‘;fkﬂ)k and N éf;i measurements nests
the appropriate anticommutators and commutators.

Remarkably, these results are exact for all measurement-
strength angles ¢. This property is specific to measurements of
observables satisfying A2 L= = 1. All decoherence terms arising
from (i) the collapses due to measurement or (ii) the dephas-
ing from random phase kicks cancel in the weighted sums.
Importantly, these correlator formulas remain valid for strong
measurements, wherein ¢ = /2. Therefore, all correlators
that can be written in this form are readily accessible to
experiment.

The mean-square error for measurements of nested
(anti)commutators C like those above has an upper bound

2

N,y n
lzm (a¢1»alk| C Uy amy, C)
- 2
ki vk =1 (g 1)
1

S (1 -+ )(sI0° By - - - 5in® @) 1o

where ny,...,n, are the numbers of statistical trials for
the measurements in the sequence. As expected, projective
measurements with ¢, = /2 have the minimum statistical
error. Compared to sequences of weak measurements with
¢r ~ 0, the number of trials required for sequences of strong
measurements to achieve the same rms error is greatly reduced.

III. APPLICATIONS

Consider measuring an operator B(r) = U, B0, that is
evolved in the Heisenberg picture. Since B(r)? = U, B2U,,
by unitarity, if B? = 1, its Heisenberg-evolved version also
satisfies l?(t)2 = 1. This means all results derived in the pre-
ceding section can be applied to B(r). Moreover, although the
circuits in Figs. 1-4 ostensibly show coupling of the ancilla to
single-qubit operators, any combination of entangling unitary
gates U may be added before and after, to create an effective
ancilla coupling to desired multiqubit operators.
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n qubits
— - AéB)b I,
_ N - bb ——
AS{:_ ~(A) Uy
M, H
a b

FIG. 5. Quantum circuit for measuring the time-ordered correla-
tor (E(t)fl)ps, with B(r) = U,lEU,. The operators Aand B may acton
any distinct combinations of the n qubits. Using the generalized mea-
surement procedures of any strength from Figs. 1 and 3, this circuit
yields the distribution of results P (a, b), witha, b € {0, 1}. Averaging
this distribution yields )", , ttg,.ag, .5 P(a, b) = Re(B(1)A) ¢, with
Up,a = (— 1)!*+9/sin ¢, and similar for b. Replacing the first mea-
surement with N(A) from Figs. 2 and 4 and performing the same

weighted average of results yields Im(B(r)A) s+

Armed with these generalizations of the preceding results,
we now consider two poignant examples: measuring two-point
TOCs and measuring four-point OTOCs.

A. Measuring two-point TOCs
First, we consider the simple example of how to measure
the two-point TOC (B(t)A),. Suppose one starts the system
in a state p, then applies a unitary evolution U,, then performs
a measurement M (B), and then applies an inverse unitary

evolution U,T to obtain UlM(B)Ut,o(
evolutions and measurement together

). We can group the

LI 4. b i
(;b)U ﬁ[cosil—l—(—l)1+b51n§(U,lBU,)i| (11)
~r[B(1)]
¢.b

UT

with a similar result for N[B(t)] That is, performing the
sequence of evolutions transforms the measurement into an
effective measurement of the He1senberg evolved operator
B(t) The linearity in B of M (B) and N (B allows for this
simplification. A further s1n1phﬁcat10n is obtalned by noting
that the cyclic property of the trace makes any final temporal
evolution irrelevant for the statistical average; that is, the
final inverse unitary evolution may be omitted if it is the last
temporal evolution in the protocol.

We can therefore measure the two-time correlator with the
following procedure. (i) Measure M (A) . (i1) Evolve under U,

(iii) Measure M (b) (iv) Average the collected distribution
P(a, b) of ordered result pairs (a, b) with the generalized
eigenvalues oy, 4@, » = (—1)T (1) /(sin ¢, sin ¢p).

This procedure yields the average
{B(). A)
2
P

=Re(B(1)A),, (12)

Z ag,.at%, »Pla, b) =

a,be{0,1}

which is the real part of the desired correlator. We illustrate
this procedure in Fig. 5.

To find the imaginary part, only one change to the above
procedure is necessary: In step (i), measure N ( 5 instead, by

changing the measured basis of the ancilla. Following the rest
of the procedure as before yields the average

[B(1), A
2i
o

= Im(B(1)A),. (13)

Z a%,aam,bP(&, b) =

a,be{0,1}

Thus, both parts of the TOC may be obtained exactly using
sequential measurements of any strength (including nondemo-
lition projective measurements), without any need for reversed
temporal evolution. This special case of our general qubit
correlator results was also noted in Ref. [66].

B. Measuring Pauli OTOCs

We can use the preceding results to measure a four-point
multiqubit Pauli OTOC directly in a manner similar to that of
the TOC example in the preceding section. The symmetry of
the OTOC expression, combined with the nice properties of the
qubit Pauli operators, simplifies the nested (anti)commutators
to the desired form.

Structurally, an OTOC is the average of a group-commutator
between unitary group elements V and W (¢), where the unitary
W) = Utl WU, is evolved in the Heisenberg picture, like the
operator B(t) in the preceding TOC. Such a group commutator
average has the form

F(t) = (Wi(O)VIW(@)V), (14)

and measures the mean perturbations of the group operations
on each other, weighted by an initial state p. Such an OTOC
arises naturally from the positive Hermitian square of the
algebraic commutator
[W(), VI W), V1\ 1 —ReF(r)
B 2
P

(i) 2i >0, 19
which implies that Re F(t) < 1

Attime ¢ = 0, W(0) and V are commonly chosen to act on
independent subsystems so that they commute and F(0) = 1.
If, under unitary dynamics, Re F () < 1, we can infer W(t) has
evolved to act nontrivially on the subsystem acted upon by V
such that W(r) and V do not share a common eigenbasis and
thus do not commute. If the evolution is such that the W (7) and
V nearly commute at later times, F (1) will experience revivals
near unity. However, nonintegrable Hamiltonian evolution can
“scramble” local information from one subspace throughout
the whole joint space such that operators on initially distinct
subspaces fail to commute for very long times. Such sustained
noncommutation prevents revivals in F (), making an ex-
tended absence of revivals a qualitative witness for dynamical
information scrambling [1-29].

As an important special case of unitary operators for n-qubit
systems, we will focus on separable products of Pauli operators
B(r) and A, using notation consistent with the preceding
section. For example, Aand B (0) could be local Pauli operators
at opposite ends of a spin chain with nonintegrable dynamics,
which is a typically considered case where an OTOC gives
interesting results [36]. Unitary operators of this class are Her-
mitian and thus satisfy A> = B(r)? = 1, as required to use our
main qubit-measurement results. The form of the OTOC then
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n qubits (B) " (B)
——— ~ [ Mdﬁmb ~ AN s BTN
M M
- ¢(l @ [ | ¢a/ 7a/_
a a’ b

FIG. 6. Quantum circuit for measuring the out-of-time-ordered correlator F(t) = (E(t)AB(t)A)pS, with B(t) = U,TBU,. Similarly
to Fig. 5, this circuit yields the distribution of results P(a,b,a’,b’), with a,b,a’, b’ € {0, 1}. Averaging this distribution produces
Y abar b Uoa.allyy b0, a1 P(a, b,a’, b') = [1 +ReF(1)]/2, with ay, , = (—1)'"“/sin¢, and similar for b,a’, b'. Replacing the first

measurement with N ;“A,)

simplifies to a four-point correlator (E(t)AB(t)A) p similar to
the preceding two-point TOC.
Consider the following measurement procedure. (i) Mea-

sure M;i). (ii) Evolve under U,. (iii) Measure M;ii. @iv)

a
Evolve backward under U, ,T .(v) Measure M (A

¢(/1 a't

der U,. (vii) Measure M;f L,. (viii) Average the collected distri-
b

bution P(a, b, a’, b") of ordered result quadruples (a, b, a’, b")

with the generalized eigenvalues oy, o0y, vQ¢, %, » [de-

fined in Eq. (A10)]. This procedure yields the average

(vi) Evolve un-

! /
D gty b, a g, Plabd b))
a,b,a’ b'ef0,1)

<{{{E<z>, A}, By, A}>
o

23
1+ Re(B()AB(1)A),
2

_,_ [Bw, AT [B®), A]
B Qi) T

(16)

That is, the average is precisely the complement of the
Hermitian square of the commutator between A and B(1),
which contains the real part of the desired four-point OTOC.
We illustrate this procedure in Fig. 6.

As with the TOC, changing only step (i) to measure N, 4(,?)&
instead yields the average

~ / /
§ a¢g,&a¢b,ba¢“/,u/a¢br,b/P(a7 ba a, b )
a,b,a’,b'e{0,1}

_ [IUB@). A}, B(1)}, A]
B 22(2i) )

_ Im(B()AB(1)A),

> ; a7

which contains the imaginary part of the same OTOC. We again
emphasize that these results hold exactly for measurements of
any strength.

Compared to the TOC measurement protocol, there is a
notable difference. Although we have omitted the final reverse
time evolution from the protocol as before, we must perform
onereverse time evolution, in step (iv). The need for this reverse
evolution makes measuring the OTOC more challenging.

», and performing the same weighted average of results yields ImF (¢)/2.

Controllable qubit circuits based on gates can invert the
gate sequence to reverse the evolution. If the time evolution is
difficult to precisely reverse directly, a possible workaround is
to introduce a time-reversal ancilla by the following extension
of the Hamiltonian (inspired by the quantum-clock protocol
[31]):

Hs—> Hi® Z. (18)
If the time-reversal ancilla is in the state |1), time will
effectively flow forward for the system as normal. If the ancilla
is in the state |0), time will seem to flow backward for the
system. This single-ancilla extension exchanges the difficulty
of reversing Hs with the difficulty of coupling Hy to an ancilla
operator 7.

IV. CONCLUSION

The sequential measurement circuits shown in this paper en-
able the exact determination of the expectation values of nested
(anti)commutators for multiqubit observables that square to
the identity. This is a useful class of observables relevant for
multiqubit quantum simulations. Two-point TOCs and four-
point OTOCs are special cases of this nested (anti)commutator
structure, making them readily accessible to experiments
with superconducting transmon qubits. Extensions to k-point
OTOCs [36,41,67-69] are straightforward, but may require
decomposing the k-point OTOC into several terms of nested
(anti)commutators that could each be measured in separate
experiments. Notably, measurements of any coupling strength
may be used, including standard nondemolition projective
measurements that minimize the statistical error.

The method presented here improves upon the originally
proposed sequential-weak-measurement approach for obtain-
ing OTOCs [35,36]. The perturbation terms now exactly
cancel, avoiding the accumulated error from measurement
invasiveness entirely. Moreover, using stronger measurements
permits smaller statistical ensembles and less data process-
ing. These advantages make the signal-to-noise ratio of the
sequential-measurement approach now comparable to other
methods to obtain an OTOC with strong measurements, e.g.,
the interferometric method in Ref. [30] and the quantum-
clock method in Ref. [31]. The sensitivity of this method to
experimental imperfections of the OTOC itself still requires
analysis [47-49,70,71].

Although the present method is particularly useful for
qubit-based simulations, the weak measurements proposed
in Refs. [35,36] apply to a wider class of nonqubit OTOCs.
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Weak measurements also enable access to a more fundamental
quasiprobability distribution (QPD) behind the OTOC [36],
which we have not explored in this work. The QPD is more
sensitive to measurement disturbance and so requires more
finesse to measure with arbitrary-strength measurements.
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APPENDIX: GENERALIZED MEASUREMENT REVIEW

For completeness, we provide a full derivation of how
ancilla-based measurement procedures work in a general way.
We then specialize those results to qubits to show precisely
where the qubit-specific simplifications arise.

1. System-ancilla coupling

Suppose one wishes to measure a (dimensionless) observ-
able A on a system using an ancilla detector. One enacts a
coupling gate that entangles the system’s A eigenbasis with
the detector and then measures the detector. The essential part
of such a gate has the form

U, = exp [—i%A ® D}, (A1)

where ¢ is an interaction angle that dictates the coupling
strength and D is a (dimensionless) detector observable.

To see why this form creates the desired entanglement,
we write the spectral expansion A= ZM Aa|Aa)(Aal and
interpret the interaction as conditionally evolving the detector
state by a distinct eigenvalue-modified angle ¢, dependent
on the eigenstate |1 4) that the system occupies:

. Aa
Us =" 1ha)(hal ® exp [—i‘bTAD}. (A2)
Aa

That is, the entangling gate is a controlled-unitary gate condi-
tioned on the eigenbasis of A.

If we enact this gate on initially uncorrelated system and
detector states ps ® |¥)(¥| and then measure a particular
detector basis to obtain the result |a),

ps @ (W) (W] — Uylps @ [W) (w110,
— Ual Uy 19) ps (W1 U} a)] ® |a)(al
= [KiupsKD ] @ la)al. (A3)

The detector decouples from the system after the measure-
ment yields |a). The resulting backaction on the system is

encapsulated in the Kraus operators [59]
Ry = (alexp (—i%/&@b) W), (A4)

which are partial matrix elements of the joint interaction 0¢.
These Kraus operators effectively condition the interaction on
definite detector states. For the purposes of the main text, we
use notation that makes explicit the dependence of K e , upon

the observable A, the interaction angle ¢, and the measured
detector basis |a), but leave implicit the dependence upon the
initial detector state |¢) and the coupling observable D, which
are kept fixed in practice.

Using the spectral expansion of A as before, we find

RSY =3 Uale P2 [y ha)ral . (AS)

A

so we can interpret the measurement as conditionally weight-
ing each eigenstate of A with a complex factor determined
by the detector pre- and postselection (a||y), as well as
the coupling generator D and the angle ¢. Factoring out the
unperturbed detector amplitudes (alyr) produces the expan-
sion K(A) (alyr) ZA m¢ " 12 4) (X 4| in terms of the detector
modular values [72]

—ipraD/2
o [v) A6)
(aly)

that completely determine how the amplitude of each |A,4)
is affected by the measurement. [If (a|y) = 0 with the
numerator of m’, , nonzero for some a and A4, m’ ¢ , diverges,
indicating that the interaction can no longer be interpreted as
a multiplicative correction to the prior amplitude. One must

return to the form in Eq. (A5).]
Generally, the detector modular values m;’*a depend upon

all powers of D, according to the Taylor expansion of the
exponential,

L (Higaar
my, = —n;‘/ D, (A7)
n=0 '
where
pw = D) (A8)
YT (aly)

are the nth-order weak values [37] of the detector observable
D. As we emphasized in Ref. [38], the perturbative series
expansion in Eq. (A7) is entirely specified by these weak
values.

2. Calibrating the measurement

The probability of the detector result a is the trace of
Eq. (A3),

P(a) = Trs(R) VR bs)

= Naly)1? Y || tal s 1ha) . (A9)
Aa
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which implies (A) = )", o, P(a) and the identity

A= RIVREY.

(A10)
provided that there exist generalized eigenvalues o, that satisfy
the matrix equation A = Ca, where A = [A4], @ = [a,], and
[Cli,.a = al¥)|? |m |2 A natural choice for such general-

ized eigenvaluesis &g = C+A, where C™ is the Moore-Penrose
pseudoinverse, if it exists [63,64].

Hence, we find the general condition for being able to
measure the system observable A in an informational sense
using the ancilla detector: If Eq. (A10) can be constructed by
some choice of values «,, the detector can be calibrated to
measure A. The generalized eigenvalues o, are the values that
the experimenter should assign to the empirical measurement
outcomes for their statistical average to produce (A).

3. Weak measurements

In the case of weak coupling, the quantity (¢A,) is suf-
ficiently small for each 14 (and the nth-order weak values
va’l)a are sufficiently well behaved [73]) to truncate this series

i(¢)\A/2)Dw,a’
where we define D,, , = D{}), by convention. In this regime,
the measurement’s complete detector dependence is approxi-
mately reduced to only the first-order weak value and the Kraus
operator linearizes

expansion to linear order, yielding m;’*u =1-

Ry = (aly) [i - i%Dw,aA + 0(¢>2>]. (ALD)
It is this effective linearity in the weak regime that permits
weak measurements to approximately determine multitime
correlators like the OTOC, as well as quantum state amplitudes
[74] and Kirkwood-Dirac quasiprobabilities [75,76] in related
protocols. In particular, the change in state to order ¢,

(A) T(A)
K . Ds quﬁ,a

Pa) — Ps

A A
~ [Re(Dw,a)[ l” S]+Im(Dw,a>({ 2” S}—(A)ﬁsﬂd),

(A12)

is sensitive to the commutator and/or the anticommutator
of A with pg. Most importantly, relative influence can be
controlled by a judicious choice of the detector weak values
by manipulating the pre- and postselection states (a| [{).

4. Qubit detector and system

In the special case of a qubit detector, with a normal-

ized Pauli observable D = d, X 4 d,Y + d.Z satisfying the

identity D? = (d2 + d2 + d2)1 =1, the modular values in
Eq. (A6) simplify to all orders in ¢,

A Qra . . Py

my’, = co ST—zsmTDw,g, (A13)

and become completely determined by the first-order detector
weak values D,, ,. The Kraus operators consequently reduce

to a simpler form

Ry = (aly) |:cos % —isin %DM]. (Al4)

If the system observable A also satisfies A2 = 1, as for
tensor products of n-qubit Pauli operators, the Kraus operators
become linear in A to all orders in ¢:

Ry = (aly) |:cos %i —isin ‘ng,aA]. (A15)

This simplification allows one to achieve results similar to
those in the weak-measurement regime using any coupling
strength. In particular, one has the exact expression

[A, ps]

—ps = Co, aRe(Dw a)

P(a) 2i
{4, bs) X
- cqy,alm(Dw,a){ S~ (A)ps
N sin2§|Dw,a|2[AA A 5
Ch.a sinqb Ps Ps
(A16)
with a normalization prefactor
Cpa = sin ¢ (A17)

- Y
1 4 sin@(A)ImD,, 4 + sin“ 5 (| Dy o|* —

that generally depends on A. In addition to the commutator
and anticommutator terms that persist in the weak regime, the
third term of Eq. (A16) is a decoherence term (in Lindblad
form [77]) that preserves the eigenbasis of A, which is the
state collapse that scales with measurement strength.

5. Canonical qubit measurements

In the main text, two strategic choices of detector configu-
rations simplify the expressions (A15 ) and (A 16) further. First,
we set the interaction rotation to D = ¥ to confine the detector
states to the Bloch sphere’s xz plane. Second, we set the initial
state [/) = |x—) to be unbiased with respect to z in that plane.
Third, we choose one of two measured detector bases to select
strategic detector weak values that are either imaginary or real
with magnitude 1: (a| = (z£| = Dy, = =i,

+1
K(;A)—> ;i sflzlzsmqu
a ﬁ 2 2

or (a| = (y:i:| = Dw,a =41,
A ~ 1 . ) '
Kq(sf,‘a) — Nq(;i = ﬁ[cos %1 Fisin %Ai|e:|:m/4-

The overall phase factors are included for completeness but
always cancel in practice.
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The (unnormalized) state updates then reduce to convenient forms

9 A 2 l ~ . AAvp\} ¢ NP ~
bt s (Zfi)=§[psism¢—s+ S ApsA— ps) |, (A18)
Voo TADSl 0 o
NyLpshyy =5 |:/0s & sin ¢ =2 4 sin 2 (Aps A — ps) (A19)

Though these expressions retain the decoherence term, it

is a constant with respect to the detector outcome, while
the terms of interest alternate in sign with the detector
outcome. As a result, if one assigns values to the detector
outcomes that also alternate in sign, then the system opera-
tions of interest can be perfectly isolated using any coupling
strength ¢:

1 - ot {4, ps)

M s}y = ==, A20

Xi: (sin¢) o PS5 Mg+ 2 (420)
+1 & (A) & HA) [AA, IOAS]

psN, ) = ——=. A21

Xi: <sin¢>> o £P5 Mo 2 2i (421)

[
The operational identities in Eqs. (A20) and (A21) enable

the methods in the main text. Sequential measurements nest
the appropriate anticommutators and commutators, provided
that all measurement outcomes are correctly averaged with
alternating signs. In contrast, if early measurements in a
sequence are marginalized over, the decoherence term will
become important and require correction.

As a final note, Eq. (A20) is related to the preceding notion
of measuring A informationally using Eq. (A10). Indeed, the
average in Eq. (A10) is the adjoint form of the operator update
in Eq. (A20), provided that no subsequent measurements are
performed. This relation makes it clear that the values g + =
+1/sin ¢ in the sum are the generalized eigenvalues needed
to measure A.
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