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Light that appears to come from a source that does not exist
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Superoscillatory, band-limited functions oscillate faster than their fastest Fourier component. Superoscillations
have been intensively explored recently as they give rise to many out-of-the-spectrum phenomena entailing both
fundamental and applied significance. We experimentally demonstrate a form of superoscillations which is man-
ifested by light apparently coming from a source located far away from the actual one. These superoscillations
are sensed through sharp transverse shifts in the local wave vector at the minima of a pinhole diffraction pattern.
We call this phenomenon “optical ventriloquism.”
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I. INTRODUCTION

As anticipated in Ref. [1] and developed in Refs. [2,3],
superoscillations give rise to nonintuitive and mathematically
rich phenomena. Superoscillations of a band-limited signal
produce spatially local regions that exhibit frequencies ex-
ceeding the highest Fourier component of the signal [3–8].
Superoscillations are general wave phenomena appearing
in both classical and quantum contexts. Classically, they
have been studied in a wide variety of systems includ-
ing optical [9,10], acoustic [9,11,12], and radio-frequency
systems [13]. Quantum mechanically, they have also been
intensively studied [2,4,14,15]. Notably, such superoscillatory
behavior has been shown in Refs. [14,16] to be tightly con-
nected to the appearance of anomalous weak values [17–20],
which are conditioned values of quantum observables that
exceed their spectral bounds.

A vivid connection between superoscillations and weak
values was recently demonstrated theoretically in Ref. [21],
which showed that by means of pre- and postselection it is
possible to make the spontaneous emission from a superposed
atom appear as if it had come from a different location than
the atom itself. In some respects, this gedanken experiment,
which relies on anomalous weak values [17–20], is a spatial
dual to traditional frequency-focused superoscillations. That
is, wave interference within a narrow band of wave vectors
yields an apparent spatial location outside the region expected
from the total signal. A similar observation that anomalous
spatial shifts can occur in reflected optical beams was thor-
oughly explored in Refs. [22–26], which very productively
highlighted the utility and versatility of the weak value for-
malism in analyzing such counterintuitive effects even outside
quantum theory.

In this paper, we theoretically analyze and experimen-
tally demonstrate another counterintuitive manifestation of

superoscillations. We show that Alice can prepare and broad-
cast a (preselected) optical signal such that when Bob
later intercepts this signal at a particular (postselected)
position, the source of that signal will appear at Bob’s de-
tector to come from a different location than Alice’s. We
call this phenomenon “optical ventriloquism” as the light
seems to be emitted from a nonexistent and spatially shifted
source, as shown in Fig. 1. Our proof-of-principle exper-
iment consists of a purely classical setup that allows the
observation of this phenomenon. The main result presented
in this work is a general wave phenomenon, closely re-
lated to the singularities of light as extensively discussed by
Berry [27].

The apparent source will shift if the local wave vector
seen at the detector no longer points radially from the source.
For this to happen, the local optimal momentum streamlines
must deviate from the ray-tracing predicted by geometric
optics. Counterintuitively, optical streamlines can bend even
without an anisotropic medium in between the source and
detector if the field amplitude varies locally, as pointed out
by Berry [28,29]. Such “self-bendings” of local wave-vector
streamlines were experimentally confirmed by Kocsis et al. in
a single-photon double-slit experiment [30], and later identi-
fied as the orbital part of the electromagnetic Poynting vector
by Bliokh et al. [31]. In this work, we point out the possible
utility of such a self-bending effect to spoof the location of a
source at a specific location where a detector is anticipated to
reside.

The rest of the paper is organized as follows. In the
next section we describe the theory underlying the experi-
ment. We then describe the experimental setup and analyze
its results, showing the optical ventriloquism effect. We
conclude with a short discussion regarding the achieve-
ments of this work as well as some prospective research
directions.
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FIG. 1. Diagrammatic sketch of optical ventriloquism. The
source and detection planes are parallel to each other. (a) Placing
the measuring slit and camera in the middle of a bright fringe in the
measurement plane will show an apparent source localized at the slit,
as expected. (b) In contrast, placing the slit and camera within a dark
fringe apparently shows a horizontally shifted source, making it seem
as if the light came from a location where there was no actual source.

II. THEORY

Light rays can bend locally in counterintuitive ways
near interference minima. To understand why, consider a
monochromatic scalar wave �(�r, t ) = exp(−iωt ) ψ (�r) of fre-
quency ω in a medium with an index of refraction n, with a
spatial amplitude ψ (�r) that we write in both Cartesian and
polar forms,

ψ (�r) = a(�r) + ib(�r) = A(�r) exp[ik0φ(�r)]. (1)

Here, the free-space wave number k0 is related to the fre-
quency ω by the speed of light in vacuum c = ω/k0, while
the wave number in the medium is n k0. By construction of
the polar form, the local wave vector �k(�r) seen at a particular
point �r is determined by the gradient of the phase [28]:

�k(�r) = k0∇φ = 1

A2
(−b∇a + a∇b) = Re

〈�r| �̂k |ψ〉
〈�r|ψ〉 . (2)

The last equality uses the identification ψ (�r) ≡ 〈�r|ψ〉 to ex-
press the local wave vector as a weak value [17] of the

wave-vector operator �̂k, postselected on a particular spatial
location 〈�r|, with the wave-vector operator defined in an anal-

ogous way to the quantum momentum operator 〈�r| �̂k |ψ〉 =
−i∇ 〈�r|ψ〉.

A superposition of waves is superoscillatory at location
�r if its local wave number |�k(�r)| lies outside the Fourier
spectra of the waves composing the superposition [32]. That

is, the local weak value of the wave-vector operator �̂k has a
magnitude outside the bounds of its spectrum in the initial
superposition state |ψ〉, making it an anomalous weak value.
For a monochromatic light beam diffracting through a slit,
for example, all radially propagating Huygens components of

the outgoing superposition have the same wave number n k0,
so a local wave vector �k(�r) will be outside the spectrum if
|�k(�r)| �= n k0. As shown below, regions of such anomalous
local wave vectors will naturally appear where the amplitude
A(�r) changes.

To see how such anomalous behavior occurs, we examine
the structure of the wave equation. The wave equation satisfied
by �(�r, t ) reduces to the Helmholtz equation for the spatial
amplitude ψ (�r), ∇2ψ + (n k0)2 ψ = 0, which can be written
as [33]

k2
0 (n2 − |∇φ|2)A + ∇2A − ik0(2∇φ · ∇A + A∇2φ) = 0.

(3)
This complex equation splits into two coupled real eikonal
equations that constrain the local wave vector,

|�k|2 = (nω/c)2 + (∇2A)/A, ∇ · �k = 2 �kA · �k, (4)

where �kA(�r) = ∇ ln A−1 = Im 〈�r| �̂k |ψ〉 / 〈�r|ψ〉 is the imagi-
nary part of the same wave-vector weak value in Eq. (2).

The standard geometrical optics limit assumes that the
wave intensity A2 is slowly varying, (nω/c)2 � |(∇2A)/A|,
such that the eikonal Eqs. (4) approximate |∇φ|2 ≈ n2 and
∇2φ ≈ 0. The solutions of these simplified eikonal equa-
tions correspond to smooth particlelike streamlines that are
sufficient for most ray-tracing applications [34]. Notably, am-
plitude variations outside this ray-tracing regime make the
second term in Eq. (2) relevant and produce anomalous wave
vectors |�k| �= n k0. When |�k| > n k0 the local wave vector be-
comes superoscillating [32]. We now demonstrate this effect
experimentally by examining the structure of local wave vec-
tors near a single-slit interference minimum.

III. EXPERIMENT

We performed an experiment to demonstrate the self-
bending of light. As discussed earlier, these self-bending
effects only occur in regions of superoscillatory behavior. We
performed a postselection on an interference pattern in the
Fresnel region near the interference minima (i.e., A small).

Our experimental scheme is depicted in Fig. 2. A 633-nm
HeNe laser beam propagates through a circular pinhole with
the diameter of 200 µm. A second pinhole of 10 µm diam-
eter postselects a small area of the first pinhole interference
pattern. It is important to note, the dimensions of the sec-
ond pinhole were chosen such that its transverse dimension
is much smaller than the width of the interference fringe.
This ensures that the postselected region was small enough
to include only a region of similar k vectors.

After the second pinhole, a scientific complementary
metal-oxide-semiconductor (sCMOS) camera is used for im-
age acquisition. The detection scheme includes the second
pinhole mounted on a stackable lens mount and screwed in
place of the camera cap ensuring the pinhole was centered
and fixed in place relative to the camera detector. The camera
was set on a precision motorized track to horizontally scan
the original first pinhole interference pattern. Relative to the
camera detector, the first pinhole is set a distance of 7.8 cm
and the second at 1.1 cm.
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FIG. 2. Experimental setup. A 633-nm HeNe laser beam diffracts
through a pinhole (PH1) with a 200-µm aperture to create an inter-
ference pattern on an image plane d1 = 6.7 cm behind the pinhole.
A motorized stage (inset in blue) scans along this image plane,
containing a second movable pinhole (PH2) with a 10-µm aperture
and an sCMOS camera placed at a distance of d2 = 1.1 cm behind
the second pinhole. The transverse shift x in the mean intensity
recorded by the camera relative to the second pinhole indicates the
angle of transverse local wave vector at the image plane according to
x/d2 = kx/kz = tan[arg(�k)].

The detection scheme was placed before the Fraunhofer
regime. Fraunhofer diffraction is defined by ka2

2z 
 1 for a
pinhole of diameter a observed at a distance z. Our param-
eters give ka2

2z ≈ 0.5, situating the experiment in the Fresnel
approximation region and providing imperfect interference
at the minima, allowing for a small amount of light to reach
the camera detector. Further, the closer the detector is to
the source, the stronger are the spatial-amplitude variations,
resulting in a large ∇2A term.

Data for this experiment were obtained by running the
horizontal scan twice. For the first run, the camera was set
to a constant exposure to obtain the power distribution of a
horizontal cut along the single pinhole diffraction pattern. In
postprocessing, the integrated flux of each frame was used
to obtain a value for the relative intensity at each camera
position. As expected, this simply reconstructs the results of
the familiar pinhole experiment identical to the black curve in
Fig. 3.

For the second run, the camera was set to automatic expo-
sure, adapting to the varying intensity while scanning across
the fringes. This allowed to measure a sufficient signal to
see the deflection of the beam in the intensity minima as
shown by the blue curve in Fig. 3. For a video of the scan,
see Ref. [35]. The transverse shifts x of the centroid of the
optical pattern on the camera relative to the pinhole were used
to measure the change in direction of the local wave vector �k
at the second pinhole (PH2) according to

tan[arg(�k)] = x

d2
= kx

kz
. (5)

FIG. 3. Superoscillations from a pinhole diffraction pattern man-
ifest as sharp transverse shifts of the k vector at minima of the pattern:
In solid blue, the experimental results. In the dotted red, theoretical
results obtained from simulation. In black, extracted from the same
simulation, a horizontal cut of the diffraction pattern.

These measured position-dependent transverse shifts are
shown in Fig. 3 (blue solid curve) and compared to the shifts
expected from the analysis in the next section (red dashed
curve).

IV. ANALYSIS

We predict the wave propagation pattern from a pinhole at
a distant plane using the Fresnel approximation to simulate
the k-vector behavior. The simulation calculates the field at
distance z as U (x, y, z), given the initial field U (x, y, 0) at the
plane of the first pinhole using the following Fresnel integral,

U (x, y, z) = eikz

iλz

∫∫ +∞

−∞
U (x′, y′, 0)ei π

λz [(x−x′ )2+(y−y′ )2]dx′dy′,

(6)
which is the two-dimensional (2D) convolution of U (x, y, 0)
and transfer function of propagation H (x, y, z), defined as

H (x, y, z) := eikz

iλz
ei π

λz (x2+y2 ). (7)

The initial field was set to U (x, y, 0) = U0 · P, where U0 is the
beam profile (plane wave or wide Gaussian). A plane-wave
description is sufficient to describe the experiment since the
pinhole is much smaller than the Gaussian width of the beam
and P(x, y) represents the barrier function (aperture) defined
by the first pinhole at z = 0,

P(x, y) =
{

1,
√

x2 + y2 � R,

0,
√

x2 + y2 > R,
(8)

where R is the pinhole radius. The resulting propagated field
was split into real and imaginary components, a and b, and
phase φ as in Eq. (1). The k-vector elements are calculated
numerically from the phase gradient according to Eq. (2).

The experimental results and theoretical predictions are
presented in Fig. 3. The red dotted line shows the theoretical
prediction, which is made by considering the propagation of
the angular spectrum of the light from the pinhole to the de-
tection plane. The general linear trend of both the theoretical
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and experimental curves shown is the expected trivial trans-
verse displacement of the observed source when the camera
is moving horizontally. This accounts for the relative lateral
shift of the two pinholes as the small pinhole propagates. The
linear behavior is interrupted by a series of sharp shifts at
the interference minima where A is small. In these k-vector
spikes, it would appear as if the source jumps to a new lateral
position relative to the camera, such that the k vector becomes
parallel to the optical axis. Thus, the image looks as though
the source abruptly moved to a new position, as depicted
in Fig. 1, which is the “optical ventriloquism” effect. These
spikes also indicate clear deviations from the standard eikonal
equation of ray optics. Additionally, it should be noted that
the asymmetry of the shifts with respect to the central camera
position is likely a result of imperfect alignment of the two
pinholes relative to the optical axis.

V. CONCLUSION

In this paper, we experimentally demonstrated a phe-
nomenon that we call “optical ventriloquism,” where light
locally appears as if it came from a fictitious source that
is located in a different place from the actual source. Re-
visiting the Helmholtz equation reveals that the ray-tracing
equations of geometric optics must be corrected in regions
where the wave amplitude rapidly changes. The local wave
vector becomes superoscillatory, which causes light rays to
bend locally and thus seem to come from a different direction.
Notably, this self-bending of the rays is a consequence of wave
interference and occurs independently of any local properties
of the medium. A local observer who intercepts such a bent
light ray would thus assume that standard ray-tracing methods
apply and incorrectly infer the direction to the source.

As a proof of principle, we use the rapid amplitude changes
near an interference fringe from the diffraction through a
single-slit source to produce the ventriloquism effect. We

measure the direction of the local wave vector at different
positions in the far field using a pair of pinholes placed before
a camera. Our data in Fig. 3 show that the transverse local
wave-vector component tends towards zero near any interfer-
ence minima in the far field, regardless of the angle between
that location and the source. Thus, at one of these locations the
collected light appears to come from a direction orthogonal
to the camera plane and not from the actual location of the
source.

We anticipate that this ventriloquism effect can be con-
trolled for specific applications by engineering the interfer-
ence pattern produced from a more complex source. For
example, a phased array of sources could be used to spoof or
obscure the location of the array for observers who intercept
the light only within a targeted spatial region. The limitations
and specific applications of such a spoofing technique are
topics for further investigation.
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