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Ubiquitous noise sources in quantum systems remain a key obstacle to building
quantum computers, necessitating the use of quantum error correction codes. Recently,
error-correcting codes tailored for noise-biased systems have been shown to offer
high fault-tolerance thresholds and reduced hardware overhead, positioning noise-
biased qubits as promising candidates for building universal quantum computers.
However, quantum operations on these platforms remain challenging, and their noise
structures have not yet been rigorously benchmarked to the same extent as those of
conventional quantum hardware. In this work, we develop a comprehensive quantum
control toolbox for a scalable noise-biased qubit, detuned Kerr-cat qubit, including
initialization, universal single-qubit gates, and quantum nondemolition readout. We
systematically characterize the noise structure of these operations using gate set tomog-
raphy and dihedral randomized benchmarking, achieving high local gate fidelities,
with F [Z(�/2)] = (99.18 ± 0.066)% and F [X (�/2)] = (92.5 ± 0.23)%.
Notably, the noise bias of the detuned Kerr-cat qubit approaches 250 with a phase-
flip time of 4 �s, which outperforms its resonant-Kerr-cat qubit counterparts as
reported previously, representing a state-of-the-art performance benchmark for Kerr-
cat qubits. Moreover, our results reveal a critical overestimation of operational noise
bias inferred from bit-flip and phase-flip times alone, highlighting the necessity
of a precise and direct benchmarking for noise-biased qubit operations. Our work
thus establishes a framework for systematically characterizing and validating the
performance of quantum operations in structured-noise architectures, which lays the
groundwork for implementing efficient quantum error correction in next-generation
architectures.

noise-biased qubit | quantum benchmarking | quantum error correction

Rapid advancements in building quantum systems with scalable, well-characterized qubits
have opened up the potential to solve problems intractable for classical computers (1–3).
However, quantum systems remain fragile, subject to various errors such as decoher-
ence (4), dephasing (5, 6), and stochastic and coherent errors (7). As a result, quantum
error correction (QEC) is essential for practical and fault-tolerant quantum computing
(FTQC) (8, 9). Most QEC protocols impose stringent performance requirements on the
physical device level due to significant hardware overhead and low error thresholds (9, 10).
The suppression of qubit errors via the surface code highlights the progress in this
direction (10). Alternatively, tailored QEC codes explore the noise structures of quantum
systems to achieve higher efficiency and error thresholds, relaxing the requirements for the
quantum device performance (11–14). QEC codes tailored for noise-biased qubits (15–
17), with resilience against a subset of Pauli errors, such as the XZZX codes (18–20), have
gained extensive attention. Recent work on enhancing the phase-flip time of dissipative
cat qubits using repetition codes marks an important step toward the extreme limit where
physical noises are so strongly biased that only one error channel requires correction (21).
Nevertheless, such a method is challenging to scale up because the uncorrected error will
still increase exponentially with the system size (21). On the other hand, the exploration
of Kerr-cat qubits (KCQs) aims to address stochastic Pauli errors based on the XZZX
surface code and relies on noise bias to achieve high error thresholds (22). Importantly,
resonant-KCQs have recently been shown to be promising through demonstrations of
their universal gate control and quantum nondemolition readout (23, 24).
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In terms of implementation, noise bias can be achieved
by encoding qubits into bosonic modes of quantum oscilla-
tors. Specifically, cat qubits (22–33), realized by engineering
Schrödinger cat states in quantum oscillators, have attracted
considerable attention due to their comparatively high noise
bias and low hardware complexity. Leveraging strong nonlin-
ear interactions in superconducting circuits, many theoretical
proposals examined cat qubit implementations (19, 34), bias-
preserving gates (35, 36), and applications in XZZX surface code
for FTQC (22). Furthermore, the successful implementation of
cat qubits in superconducting circuits has driven experimental
advances (24, 26). The universal quantum operations of a
KCQ under a resonant two-photon stabilization drive, or
resonant-KCQ, have been demonstrated recently (23, 37, 38).
In addition, a significant bit-flip time improvement has been
observed on detuned-KCQs through a red-detuned two-photon
stabilization drive in a 3D cavity (39). However, noise structure
characterization on KCQs has so far been limited to bit-flip and
phase-flip time measurements when the qubits are idle, leading to
overestimated noise bias in actual gate operations. Furthermore,
while detuned-KCQs are predicted to have improved bit-flip
times (40), prior investigations have been restricted to spectral
and coherence measurements in 3D architectures, leaving their
realization in scalable 2D platforms and the implementation of
universal quantum operations unexplored (39). The absence of
direct noise characterization for KCQ operations and universal
gate implementations for detuned-KCQs has limited their
further progress. Therefore, the development of a comprehensive
quantum control toolbox for detuned-KCQs and a direct,
accurate, and thorough characterization of the quantum gate
noise structures are crucial for advancing KCQs toward further
applications in QEC.

In this work, we develop a comprehensive quantum control
toolbox for the detuned-KCQ in planar superconducting
circuits, including the high-fidelity initialization, universal
single-qubit gates, and quantum nondemolition readout,
with a comparison to its resonant counterpart realized in
our previous work (23). Moreover, we directly characterize
the noise structures of single-qubit operations for both the
resonant- and detuned-KCQ, providing a precise and detailed
description of the various noises affecting these operations.
Using gate set tomography (GST), we achieved SPAM-free
gate fidelities over (92.5± 0.23)% for the X (�/2) gate and
(99.18± 0.066)% for the bias-preserving Z(�/2) gate, un-
derscoring the highest performance in a noise-biased platform.
Benchmarking with D8 dihedral group randomized benchmark-
ing (DRB) (41, 42) further reveals a noise bias exceeding
100 for the noise-preserving operations of KCQs. Notably,
the detuned-KCQ exhibits lower bit-flip errors and similar
phase-flip errors compared to the resonant-KCQ, resulting in
a noise bias of 250, which indicates the advantage of detuned-
KCQ.

Interestingly, the noise bias of short gates extracted using
DRB is much lower than that estimated from the bit-flip and
phase-flip time measurements, signifying the inaccuracy of noise
bias characterization based solely on idling lifetimes. As the first
thorough and direct exploration of the noise structures of quan-
tum operations on noise-biased qubits, we provide a framework
for benchmarking the performance of quantum systems with
structured noises. Moreover, thanks to the development of high-
fidelity universal single-qubit operations on the detuned-KCQ,
our work also positions detuned-KCQ as a strong candidate for
noise-biased QEC.

Noise-Biased Cat Qubit Encoding and Control

We extend the investigation of the resonant-KCQ introduced
in our previous work (23) to explore the detuned-KCQ by
engineering the effective Hamiltonian of a superconducting
nonlinear oscillator under a strong two-photon stabilization drive
with various frequencies. The encoding and operations of the
detuned-KCQ are illustrated in Fig. 1. The nonlinear oscil-
lator consists of two Superconducting Nonlinear Asymmetric
Inductive eLements (SNAILs) shunted by a capacitor shown in
Fig. 1A. Each SNAIL consists of three large Josephson junctions
with Josephson energy EJ and a small Josephson junction with
Josephson energy �Ej (SI Appendix, section 1). For a fixed external
flux �ext, the undriven SNAIL nonlinear oscillator offers an
anharmonic potential with nonzero third-order g3 and fourth-
order g4 nonlinearities shown in Fig. 1A. Using two SNAILs
connected in series could increase the g3/g4 ratio by a factor of
2, leading to a more efficient two-photon stabilization process
(23, 43).

Under a two-photon stabilization drive at frequency !S , the
effective Hamiltonian in the frame rotating at frequency !S/2 is

Ĥdetuned-KCQ/ℏ = Δâ†â + �2â†2 + �∗2 â
2
− K â†2â2, [1]

where we applied the rotating wave approximation (Materials
and Methods). The nonzero detuning Δ = !Q −!S/2 is crucial
to encode the detuned-KCQ with enhanced performance. The
two-photon stabilization drive �2 is engineered with the third-
order nonlinearity, which converts a single photon from the drive
at frequency !S into two photons in the SNAIL oscillator at
frequency !Q , and the Kerr coefficient K originates from the
fourth-order nonlinearity.

This Hamiltonian forms a pseudopotential with a double-well
structure containing two degenerate ground states at the bottom
of the wells, as shown in Fig. 1B for resonant-KCQ with Δ = 0
and Fig. 1C for detuned-KCQ with Δ = 2K . These states are
separated from the excited states | ±e 〉 by an energy gap of 4K |�|2
with |�|2 = (|�2|+Δ/2)/K , where |�|2 is often used to indicate
the size of the cat in phase space. These ground states approach
the coherent states | ± �〉 rapidly as |�2|/K increases (Materials
andMethods). By encoding these ground states as theZ -axis states
on the Bloch sphere, their superposition spans the computational
space of KCQs, as shown in Fig. 1D.

As a noise-biased qubit, KCQ has a higher bit-flip time Tz
than the phase-flip time Ty. The coherent states on the Z axis,
as eigenstates of the bosonic annihilation operator, are immune
to photon losses, thus leading to the increased Tz . However,
single-photon loss flips the cat states on the equator of the Bloch
sphere with a rate enhanced by |�|, leading to the reduced Ty.
It is important to note that, as illustrated in Fig. 1C , the excited
states of the detuned-KCQ are degenerate when the two-photon
stabilization drive is red-detuned by Δ = 2K . Such degeneracy
can lead to an even higher bit-flip time Tz without further
degradation of the phase-flip time Ty (39), providing advantages
in quantum information processing (Materials and Methods).

While the quantum operations of a resonant-KCQ have
been extensively studied in our previous work and related
literature (23, 24, 38), only bit-flip time measurement has been
reported for detuned-KCQs with a small two-photon stabiliza-
tion drive (39), hindering its further development. Here, we
demonstrate a complete quantum control toolbox for detuned-
KCQ, including the initialization, universal single-qubit gates,
and quantum nondemolition readout. The universal single-qubit
gates consist of the continuous Z(�) gates and a discrete X (�/2)
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A B E

C D F

Fig. 1. Kerr-cat qubit concepts. (A) SNAIL nonlinear oscillator circuit with frequency !Q, nonlinear factors g3 , g4 and Kerr nonlinearity K , and its energy levels
with wave-functions. (B) SNAIL oscillator pumped by a two-photon stabilization drive at !S = 2!Q, and the engineered pseudopotential profile with its energy
levels and wave-functions. (C) Pseudopotential profile and its energy levels engineered by a red-detuned two-photon stabilization drive, where the excited
states become degenerate. (D) Bloch sphere defined by the coherent states and their superpositions, where | ± Z〉 = | ± �〉, | ± X 〉 = |C±� 〉 ∝ |�〉 ± | − �〉,
| ± Y 〉 = |C±i� 〉 ∝ |�〉 ± i| − �〉. (E) Pseudopotential profile under a single-photon drive Ω at !S/2 for Z(�) gates. (F ) Pseudopotential profile under a blue-detuned
two-photon stabilization drive for the X(�/2) gate. The detuning was chosen to be 5K as an example.

gate through pseudopotential deformation. The continuousZ(�)
gates are realized by a single-photon drive Ω to lift the degeneracy
between the two coherent states, allowing them to accumulate
different dynamical phases, as shown in Fig. 1E . The discrete
X (�/2) gate is engineered by blue-detuning the stabilization
drive to lower the energy barrier between the two coherent states,
allowing them to tunnel between the two wells, as shown in
Fig. 1F (Materials and Methods). By manipulating the detuning
carefully, a nonzero coupling between the two states in each well
can be engineered, which effectively lifts the degeneracy between
the even and odd parity eigenstates of the system, leading to
coherent state transition between | − �〉 and |+ �〉. In contrast
to the previously reported method for resonant-KCQs based on
the interruption of two-photon stabilization drive with a fidelity
of 85.7% (38), our method corresponds to a fidelity over 92%,
even for large cat sizes, by keeping the stabilization drive on to
mitigate the effects of decays of Fock states.

Qubit Initialization, Readout, and Lifetime
Characterization

The KCQ is initialized to the |+ Z〉 state by heralding through
cat quadrature readout (CQR). CQR is realized by a beam-
splitter interaction engineered through the three-wave mixing
process (Materials and Methods). Under such a beam-splitter
interaction, the readout resonator is populated to a steady state
depending on the average value of the KCQ mode 〈â〉. Therefore,
by detecting the readout resonator state, one can determine in
which well the KCQ state resides and collapse it into one of
the pseudopotential wells. This process enables the readout of

KCQ along the Z axis because the | ± Z〉 states of KCQ are
coherent states localized in one of the potential wells. This readout
method is quantum nondemolition when the mean photon
numbers in KCQs are conserved due to the much stronger two-
photon stabilization drives than the beam-splitter interactions.
The quantum-nondemolition-ness (QNDness), defined as the
probability of measuring the same results in two consecutive
readouts, is observed to be over 98%. Such high QNDness allows
the initialization of qubits through heralding.

While the resonant-KCQ can be initialized from a vacuum
state by applying a CQR pulse immediately after ramping up
the stabilization drive, a sufficiently long relaxation time before
the CQR pulse is necessary to initialize the detuned-KCQ. This
is because the vacuum state can be mapped to the excited states
with a detuned stabilization drive (Materials andMethods). In the
experiments, the initialization sequence is shown in Fig. 2A, along
with the corresponding potential profiles and wave-functions in
Fig. 2B. By ramping up the two-photon stabilization drive, the
potential of the SNAIL oscillator is converted to a double-well
pseudopotential. Notably, due to the detuning Δ of the two-
photon stabilization drive, the vacuum state is mapped to the
even-parity excited state of the pseudopotential, which is out of
the computational manifold. Therefore, a 400-μs relaxation time
is added to allow this excited state to decay to the ground states
in the computational manifold. Finally, the detuned-KCQ state
is collapsed onto the |+Z〉 states by a CQR pulse (Materials and
Methods).

Fig. 2C shows the simulated overlaps of the detuned-KCQ
state | (t)〉 with the computational states |C±� 〉 = | ± X 〉
and the vacuum state |0〉 during initialization with Δ = 2K .
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A

B

C

D

E

Fig. 2. Initialization, bit-flip times, and phase-flip times. (A) The sequence for detuned-KCQ initialization. (B) The evolution of the potential profiles and wave-
functions during the initialization. (C) The numerical simulation of the detuned-KCQ state population transfer during the initialization. (D) The bit-flip time Tz of
resonant-KCQ and detuned-KCQ as a function of mean photon numbers. (E) The phase-flip time Ty of resonant-KCQ and detuned-KCQ. The error bars are from
fitting uncertainty, and the theory predictions of the bit-flip times are calculated by master-equation simulations illustrated in refs. 33 and 39 and Materials and
Methods.

The leakage out of the computational basis is defined as pleakage =
1 − |〈 (t)|C+

� 〉|
2
− |〈 (t)|C−� 〉|

2. Another fast initialization
method based on a chirp pulse has been reported recently (37, 44),
but our method achieves higher initialization fidelity despite the
long relaxation times, as indicated by the high QNDness over
98% (Materials and Methods, Fig. 7).

We characterize the bit-flip time Tz (phase-flip time Ty) of the
KCQ by initializing it along the Z -axis (Y -axis) and measuring
the decay of the Pauli operator expectation values 〈Ẑ〉 (〈Ŷ 〉). As
shown in Fig. 2 D and E , Tz increases quasi-exponentially in a
staircase-like manner with the mean photon number 〈n̂〉 = |�|2,
whileTy decreases according toTy = T1/(2〈n̂〉) (23, 24, 45, 46),
where T1 ≈ 40 μs is the relaxation time of the SNAIL oscillator.
The apparent fluctuation in Ty for the resonant-KCQ can be
largely attributed to limited measurement accuracy and the
finite number of averages, rather than to intrinsic dependence
on the cat size. A master equation simulation, accounting for
both single- and two-photon losses, photon heating, and non-
Markovian noise mechanisms, captured the behavior of Tz , with
discrepancies at high 〈n̂〉 primarily due to increased thermal
population (Materials and Methods).

Due to the degeneracy of higher excited states, we observed
increased Tz with detuning Δ = 2K, 4K ... (Materials and
Methods). Specifically, Tz is higher for Δ = 2K compared
to Δ = 0 with the same mean photon number, and more
importantly, the same Ty, as shown in Fig. 2 D and E . Therefore,
a detuned-KCQ withΔ = 2K is expected to exhibit greater noise
bias without additional phase-flip errors, which motivates the
exploration of detuned-KCQ for enhanced performance (39, 47).

In the following sections, we focus on the case where 〈n̂〉 = 5.2
(dashed lines in Fig. 2 D and E) and fix the detuning of the

detuned-KCQ to be 2K . At this operating point,Tz is peaking for
detuned-KCQ, while Ty remains sufficiently high for quantum
gate control. The bit-flip time Tz of detuned-KCQ reaches up
to 1.2 ms, approximately three times the 0.38 ms observed for
the resonant-KCQ. Meanwhile, the phase-flip time Ty is around
4 μs for both the resonant-KCQ and detuned-KCQ.

Gate Fidelity Characterization

As mentioned earlier, universal single-qubit control of detuned-
KCQs is achieved using discrete X (�/2) gates and continuous
Z(�) rotations. The X (�/2) gate is realized by frequency-
modulating the two-photon stabilization drive to transiently
lower the pseudopotential barrier, while the Z(�) rotation is
implemented via a single-photon drive (Materials and Methods).
To estimate the performance of gate operations and, more
importantly, the noise structures on resonant- and detuned-
KCQ, we implement GST on X (�/2) and Z(�/2) gates to
extract the error rates, gate fidelities, and Pauli transfer matrices
(PTMs) without SPAM errors (SI Appendix, section 5). The error
channels are considered a combination of coherent and stochastic
Pauli errors, described by a PTM E = eL. The error generator L
is defined as

L = hxHx + hyHy + hzHz + pxPx + pyPy + pzPz, [2]

where Hx(Px),Hy(Py),Hz(Pz) are the coherent (stochastic)
error generators with respect to X , Y , and Z axes and
hx (px), hy (py), hz (pz) are the corresponding errors (SI Appendix,
section 8).

The model violation of GST under completely positive, trace
preserving (CPTP) (48) constraints is N� = 14.51, indicating
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Fig. 3. GST results. SPAM-free Pauli transfer matrices, process infidelities, diamond distances, stochastic Pauli errors, and coherent Pauli errors for gates on
resonant- and detuned-KCQs. (A) resonant-KCQ X(�/2) gate with 367-ns gate time. (B) resonant-KCQ Z(�/2) gate with 70-ns gate time. (C) detuned-KCQ X(�/2)
gate with 418-ns gate time. (D) detuned-KCQ Z(�/2) gate with 70-ns gate time. The uncertainty represents the SD of the model fitting, and each circuit in GST is
repeated by 1,024 shots.

some out-of-model effects in our system (SI Appendix, section 6).
The SPAM-free estimations of the PTMs, errors, and fidelities for
X (�/2) and Z(�/2) gates are shown in Fig. 3. For Z(�/2) gates,
the stochastic Pauli X and Y errors are significantly smaller than
the stochastic Pauli Z errors, confirming the bias preservation.
Our KCQs exhibit low coherent errors, as evidenced by similar
diamond distances and process infidelity. In fact, the effects of
coherent errors are negligible after Pauli twirling (SI Appendix,
section 8). According to the extracted process infidelities of
the quantum gates, the process fidelities of Z(�/2) and
X (�/2) gates for the resonant-KCQ are (99.25± 0.067)% and
(94.7± 0.18)%, and the detuned-KCQ has similar performance
with the fidelities of (99.18± 0.066)% and (92.5± 0.23)%,
respectively, signifying state-of-the-art performance (23, 24). The
slightly lower gate fidelity of the X (�/2) for detuned-KCQ is
mainly due to the longer gate time.

Even though GST provides a comprehensive description of
the noise structures of quantum operations on KCQs and
confirms the noise-bias structure for bias-preserving gates, the
uncertainty of extracted stochastic Pauli X and Y errors for bias-
preserving gates is so large that a faithful estimation of them is
not possible. This is because the Pauli X and Y errors are too
small to be measured by GST with a shallow circuit depth of
128 at most. Therefore, we will apply the noise-biased dihedral
randomized benchmarking method with significantly deeper
circuits to accurately extract the rare Pauli X and Pauli Y errors.

Noise-Biased Dihedral Randomized
Benchmarking

Quantum operations usually introduce additional noise, which
may degrade the noise bias. Therefore, the naive estimations

of noise-bias from bit-flip and phase-flip time measurements
(23, 24, 39) are not accurate, and it is essential to benchmark the
noise-bias of bias-preserving operations of the KCQ. Based on
the stochastic Pauli error channel, we define the bit-flip error as
pbit = px +py, the phase-flip error as pph = pz , and the noise bias
as � = pph/pbit. The conventional randomized benchmarking
method based on Clifford gates will mix the bit-flip and phase-
flip errors, thereby preventing the estimation of noise bias (49).
Therefore, we present an experimental application of the DRB
protocol on the KCQ to extract the noise structure of the Z(�)
gates with high precision (41, 42) by applying a benchmarking
circuit with a maximum depth over 2,000. This protocol is also
extensible to multiqubit gate benchmarking by a recent protocol
on CX dihedral groups (42).

The noise-biased DRB protocol samples random operations
from the single-qubit D8 dihedral group, which is generated by
X (�) and Z(�/4) gates. The X (�) gate for KCQ is trivially
a � phase shift of the reference, which can be applied virtually
by adding an extra phase to the following control and readout
pulses in a noise-free manner. This noise-free virtual X (�) gate
generates a bias-preservingD8 dihedral group with Z(�/4) gates.
Therefore, the DRB protocol avoids mixing the bit-flip and
phase-flip errors, allowing them to be benchmarked separately.
However, the noise-free property of the virtual X (�) gate leads
to an underestimation of the extracted errors of Z(�) rotations
because the extracted errors are weighted averages of both the
noise-free virtual X (�) gate and noisy Z(�) rotations. Even
though such underestimation is minor due to the low weight of
the X (�) gate in D8, we proceed to address this underestimation
by introducing a scaling factors of 1.07 for pbit and 1.02 for pph
calculated from numerical simulations (SI Appendix, section 7).
As a result, by applying the DRB protocol, we can precisely
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A

B

Fig. 4. DRB results. (A) The bit-flip pbit and phase-flip pph errors of resonant-
and detuned-KCQ, and corresponding estimation p̃ph and p̃bit based on the
bit-flip and phase-flip times measured in Fig. 2. The error bars are smaller
than the marker size and therefore not plotted. (B) The noise bias as a function
of phase-flip errors.

extract the bit-flip errors, phase-flip errors, and noise bias of the
bias-preserving gates.

We presently explore the noise structure of the resonant-KCQ
and detuned-KCQ as a function of Z(�) gate times, with results
shown in Fig. 4A, where the uncertainty of the extracted errors
is significantly smaller than that from GST. We also plot the
bit-flip and phase-flip errors as predicted by the bit-flip and
phase-flip times based on the stochastic Pauli error model (50).
For both the resonant-KCQ and detuned-KCQ, the bit-flip
error is much lower than the phase-flip error. Clearly, while the
phase-flip errors align with the rates inferred from the phase-flip
time (green line), the bit-flip error is typically much higher than
predicted by the bit-flip time (red and blue lines for resonant-
and detuned-KCQs, respectively). We attribute the high bit-
flip error at short gate times to the leakage into higher excited
states caused by the strong gate drive, which tunnels between
the wells of the pseudopotential. As the gate time increases, the
bit-flip error approaches the error set by the bit-flip time. These
observations highlight an underestimation of the bit-flip errors,
and accordingly, an overestimation of the noise bias, based solely
on the bit-flip and phase-flip times, underscoring the need for
direct benchmarking of the operational noise characteristics. The
additional structure of the bit-flip errors with several local minima

is related to the details of the gate pulses and leakage, which may
provide insights for improving gate performance through pulse
shaping (SI Appendix, section 10).

As shown in Fig. 4A, for gate times longer than 60 ns,
the detuned-KCQ has a lower bit-flip error than the resonant-
KCQ while maintaining the same phase-flip error, indicating the
advantage of the detuned-KCQ with higher noise bias. Fig. 4B
further shows the noise-bias of both resonant- and detuned-
KCQs with respect to their phase-flip errors. Using the detuned-
KCQ, we can achieve a noise bias as high as 250 with phase-flip
error rates below 2% for the bias-preserving gate set. This
is over twice as large as that for the resonant-KCQ without
increasing the phase-flip error. Such high-fidelity bias-preserving
gates with a large noise bias, together with high-fidelity quantum
nondemolition readout and state initialization, represent the
state-of-the-art performance and position detuned-KCQ as a
promising platform for the future implementation of hardware-
efficient quantum error correction.

Discussion

In summary, we have developed a complete quantum control
toolbox for detuned-KCQs, including initialization, universal
single-qubit gates, and quantum nondemolition readout. More-
over, we provide a comprehensive experimental benchmarking of
noise-biased qubit operations, confirming their bias-preserving
properties and revealing the inaccuracy of noise bias estimation
from idling bit-flip and phase-flip times. By introducing a
detuned stabilization drive to enhance the bit-flip time, we
demonstrate the implementation of high-fidelity single-qubit
universal quantum operations on a detuned-KCQ, achieving a
bit-flip time of 1.2 ms, which is three times the conventional
resonant-KCQ, without further introducing more phase-flip
noises. Using GST, we extract the detailed noise structure of
the noise-biased qubit operations, and measured SPAM-free
gate fidelities of over (92.5± 0.23)% for the X (�/2) gate
and (99.18± 0.066)% for the bias-preserving Z(�/2) gate,
representing the highest performance reported for KCQs. The
minimal bit-flip error and the high noise bias of the bias-
preserving gates are further accurately measured by the DRB
protocol. While the resonant-KCQ already shows a large noise
bias as high as 100 with a phase-flip error rate below 2%, the
detuned-KCQ has an even larger noise bias of 250 with a similar
phase-flip error rate. With the DRB protocol, we confirmed the
enhanced noise-bias without degraded phase-flip error for bias-
preserving gates of detuned-KCQ, demonstrating the advantage
of detuned-KCQ.

The decay rate of the SNAIL nonlinear oscillator primarily
constrains the performance of the detuned-KCQ. Continued
advancements in superconducting circuit materials are expected
to reduce this decay rate (51). Further performance enhancement
of detuned-KCQs can be achieved by engineering faster gate
operations through pulse shaping to reduce leakage error (52, 53),
or through optimized circuit designs to increase the excited
state energy gap (33). In addition, the model violation observed
in GST under the CPTP framework for noise characterization
implies some out-of-model effects, such as leakage, but a more
direct and precise characterization of these errors would be
beneficial for optimizing performance.

Our work exemplifies the characterization and benchmarking
of noise-biased qubits, providing a framework that can be
extended to other quantum systems with structured noises, such
as dissipative cat qubits (21, 26, 54), GKP qubits (55–57),
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and binomial qubits (58). Compared to other bosonic qubit
platforms with biased noise, the detuned-KCQ uniquely achieves
high-fidelity quantum nondemolition readout and universal gate
operations simultaneously with low hardware complexity. It
is also compatible with recently demonstrated two-qubit gate
operations in experiment (59). Leveraging a scalable planar
superconducting architecture, our work is well positioned for
extension into multiqubit processors, paving the way for the
application of noise-biased qubits in QEC. Moreover, the
enhanced bit-flip time of the detuned-KCQ presents it as a
promising ancilla for universal control of a quantum cavity,
effectively mitigating parasitic error propagation (60, 61). As a
Kerr parametric oscillator (KPO) with the double-well potential,
the detuned-KCQ also opens possibilities for KPO-network-
based Ising machines, fostering advancements in analog quantum
computing (62–64).

Materials and Methods

Detuned-KCQHamiltonian and Eigenstates. The detuned-KCQ Hamiltonian
is engineered through a superconducting nonlinear resonator under a strong
two-photon stabilization drive. The SNAILs in the resonator provide the nonlinear
potential.

USNAIL(�) = −�EJ cos�− 3EJ cos
(
�ext − �

3

)
, [3]

where EJ/ℏ = 2� × 263.2 GHz is the Josephson energy of the large junction
in SNAILs, � = 0.1 is Josephson energy ratio between the small and large
junctions, �ext is the scaled external magnetic flux threading the SNAIL loop,
and� is the associated superconducting phase across each SNAIL.

For a fixed external flux, by Taylor expanding the potential energy up to the
fourth order,

USNAIL(�) ≈ USNAIL(�min) +

4∑
k=2

gk(�− �min)
k , [4]

one can observe that the SNAIL offers both nonzero third-order and fourth-order
nonlinearities necessary for engineering the detuned-KCQ Hamiltonian. Under
a two-photon stabilization drive, applying the rotating wave approximation in
the rotating frame yields the effective Hamiltonian Ĥdetuned-KCQ shown in the
main text. Without loss of generality, the two-photon stabilization drive will be
assumed to be in-phase, i.e. �2 ∈ ℝ.

To analyze the eigenenergy and eigenstates of this Hamiltonian, a
displacement transformation D̂(�) is introduced to obtain the corresponding
Hamiltonian in the displacement frame written as

Ĥdetuned-KCQdisp
= E + Λa† + Λ∗a + Δ̃a†a + �̃2(a

†2 + a2)

+ Γa†2a + Γ∗a†a2
− Ka†2a2,

[5a]

where the coefficients are given by

E = Δ|�|2 − K|�|4 + �2(�
2 + �∗2), [6a]

Λ = −Δ� + 2K|�|2�∗ − 2�2�
∗, [6b]

Δ̃ = Δ− 4K|�|2, [6c]

�̃2 = −K�2 + �2, [6d]
Γ = −2K�. [6e]

With a suitable choice of � =
√

(�2 + Δ/2)/K, the single-photon drive
terms are canceled out (i.e. Λ = 0), and the displaced Hamiltonian can be
written as

Ĥdetuned-KCQdisp
=H0 + H1, [7a]

H0 =
(Δ/2 + �2)

2

K
− (4�2 + Δ) a†a, [7b]

H1 =−
1
2
Δ(a†2 + a2) [7c]

− (2�2 + Δ)(a†2a + a†a2)− Ka†2a2, [7d]

where the eigenstates and energies of H0 are Fock states |n〉 with energy

E(0)
n = (Δ/2 + �2)

2 /K − (4�2 + Δ) n, andH1 is treated as a perturbation
as long as its energy scale is much smaller than the energy gap of the unperturbed
system (|�2| � |K|, |Δ/2|).

First, the perturbed ground state energy is estimated as

Ẽ0 = E(0)
0 + E(1)

0 + . . . =
(Δ/2 + �2)

2

K
+

Δ2K

(4�2 + Δ)2
+ . . . , [8]

In Fig. 5A, we plot the fractional deviation of the estimated ground state
energy (Ẽ0) from the exact ground state energy (E0) given by the numerical
diagonalization with various two-photon stabilization drive strengths. In the
regime of interest where Δ/K ∼ 2 and �2/K ∼ 1 − 10, the unperturbed

ground state energy E(0)
0 matches the exact ground state energy with less than

5% deviation, which is further improved slightly by the perturbation theory.
Second, the perturbed ground state (up to the first order) is given by

| 0〉 = N
(
|0〉 −

√
2Δ

4(4�2 + Δ)
|2〉

)
, [9]

where the perturbation introduces the occupation beyond the unperturbed
ground states, and N is the normalization factor. After returning to the
undisplaced frame, the ground state ends up approximately as the coherent
state,

|�〉 = D̂†(�)| 0〉 = N
(
| − �〉 −

√
2Δ

4(4�2 + Δ)
D̂†(�)|2〉

)
≈ | − �〉.

[10]

A B

Fig. 5. Detuned-KCQ ground state and its energy with Δ = 2K . (A) The fractional deviation of the ground state energy estimated by the unperturbed
Hamiltonian and perturbation theory. (B) The difference between the coherent state and the ground state of the detuned-KCQ Hamiltonian calculated by
numerical diagonalization (ND) and perturbation theory (PT).
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deg 1N = deg 2N = deg 3N = deg 4N = deg 5N =
A B C

Fig. 6. Master equation simulation. (A) The bit-flip times Tz with different mean photon number and their master equation simulation with the fitting
parameters taking different incoherent processes into account. (B) detuned-KCQ Hamiltonian spectrum with detuned two-photon stabilization drive. (C) The
bit-flip times Tz with different detuning and their master equation simulation.

The difference between the coherent state | − �〉 and the ground state |�〉
of the detuned-KCQ when Δ = 2K is shown in Fig. 5B. The Wigner functions
of the ground states when �2/K = 1 and �2/K = 4 are also plotted in the
Inset indicated by the orange and blue stars. Both results from perturbation
theory and numerical diagonalization indicate the rapidly decreasing difference
between the coherent state and the detuned-KCQ ground state. At the operating
point in this work, such a difference is below 0.3%.

Detuned-KCQ Bit-Flip Time Tz Simulations. We illustrate the simulation of
bit-flip times Tz in this section and emphasize the enhancement of bit-flip times
when the two-photon stabilization drive is detuned by 2K, 4K... due to the
degenerate higher excited states (23, 38, 39).

The Kerr-cat qubit inevitably disperses irretrievable information to the
environment, leading to incoherent processes. We model the environment by a
chain of harmonic oscillators with infinite modes and temperature TE. While the
exact dynamics of arbitrary system–environment interaction and environment
evolution are intractable analytically, one can construct the master equation
describing various effects of the environment on the system under assumptions
that generally hold in the experiments, including weak system–environment
coupling and a Markovian thermal environment. For simplicity, we consider an
environment with fixed thermal distribution and energy-independent coupling
with the system. With the above approximations, the master equation has the
following form,

d�̂
dt

= −i[Ĥ, �̂] +
∑
l


lD[Ôl]�̂, [11]

whereÔl describethreesetsof incoherentprocesses, includingÔ1,↓ (Ô1,↑) =

â (â†) for the single-photon dissipation (excitation) process, Ô2,↓ (Ô2,↑) =

â2 (â†2
) for the two-photon dissipation (excitation) process, and Ô� = â†â

for the dephasing process. The corresponding coefficients 
1,↓(
1,↑) ∝ �(1),


2,↓(
2,↑) ∝ �(2), and 
� ∝ �� are single-photon dissipation (excitation),

two-photon dissipation (excitation), and dephasing rates, where�(1) and �(2)

are the single-photon and two-photon spontaneous decay rates, respectively.
A detailed derivation of the master equation along with the expressions for

1,↓(
1,↑), 
2,↓(
2,↑) and 
� is presented in refs. 23, 33, and 46. Beyond
the three incoherent processes above, we also consider a stochastic process that
leads to fluctuations in the SNAIL nonlinear oscillator frequency with a noise
strength of � (23, 33).

With such four processes in a thermal environment with thermal photon
population nth = 4%, and fitted parameters �(2) = 7 MHz, �� = 100 Hz,
� = 40 kHz, the experimental behavior of the bit-flip times Tz is accurately
modeled as shown by the agreement between the experiment data and master
equation simulation results in Fig. 2. The thermal population corresponds to
a temperature of 86.9 mK, which is higher than the base temperature of the
dilution fridge due to the strong microwave drives. The pure dephasing rate
�� is lower than that estimated from the T2 values, which is also observed in

all related literature (27, 33, 38), and might be due to the nonuniform power
spectrum of the dephasing process under strong drive.

Here, we illustrate the effects of each process in detail. As shown in Fig. 6A, we
fit the bit-flip times of a resonant-KCQ as a function of two-photon stabilization
drive strength �2. When only considering the single-photon dissipation and
excitation, i.e. �(2) = �� = � = 0, the master equation simulation follows
the blue curve, overestimating the bit-flip times Tz . By introducing the stochastic
frequency fluctuation of the SNAIL nonlinear, i.e., �(2) = �� = 0, the
master equation simulation successfully modeled the bit-flip times with small
�2 following the yellow curve, but failed to model the strongly driven regime.
Finally, only by including all four processes does the master equation simulation
accurately model the experimental data, as shown by the red curve.

Beyond the influence on bit-flip times Tz by the two-photon stabilization drive
strength, the detuning of two-photon stabilization drives, with Δ = 2K, 4K...,
can lead to degenerate higher excited states marked by the stars in Fig. 6B, and
increase the bit-flip times. We observe Ndeg degenerate points, corresponding
toNdeg− 1 higher excited degenerate states, whenΔ = 2(Ndeg− 1)K. With
a fixed two-photon stabilization drive strength �2 = 4.2K, we measured the
bit-flip times with various detuning Δ, as shown in Fig. 6C. The increase of the
bit-flip times when Δ = 2K and 4K is observed both in experimental data
and predicted in the master equation simulations, demonstrating the validity of
the theoretical model. A discussion on the performance of detuned-KCQs with
Δ = 4K is provided in SI Appendix, section 9.

Quantum Control Toolbox for a Detuned-KCQ. In order to operate a system
as a qubit for quantum computing, it is crucial to have reliable state readout,
universal quantum control, and state initialization.

The readout of the detuned-KCQ is enabled by a beam-splitter interaction
between the detuned-KCQ mode â and the readout resonator mode b̂. Due to the
detuning of the stabilization drive, the rotating frame frequency is referenced at
half of the stabilization drive frequency instead of the qubit frequency. Therefore,
by applying a cat-qubit-readout (CQR) drive at frequency!CQR = !R−!S/2,
we can engineer a beam-splitter interaction given as

ĤBS = �CQRa
†b + �∗CQRab

†, [12]

where!R is the readout resonator frequency and �CQR is the interaction rate.
Such an interaction will populate the readout resonator mode b̂ depending

on the expectation value of the detuned-KCQ mode â as

〈b̂〉(t→ +∞) =
2�CQR
�R
〈â〉, [13]

To calibrate the CQR drive, we apply two consecutive CQR pulses with a
duration of 4.5 μs for each, and define the QNDness as (P

[
M|+�〉|M|+�〉

]
+

P
[
M|−�〉|M|−�〉

]
)/2, where P [MA|MB] represents the probability of getting

result A with the second CQR pulse conditioned on having obtained result B

8 of 11 https://doi.org/10.1073/pnas.2520479123 pnas.org
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Fig. 7. Detuned-KCQ readout, initialization, and gate calibration. (A) The histogram of CQR. (B) The collapse of wave-functions corresponding to CQR. (C) The
QNDness optimization of CQR with various readout strengths. (D) The SNAIL nonlinear oscillator spectrum in the rotating frame as a function of detuning. (E)
The sequence for calibrating X(�/2) gate with 400-μs relaxation time in the initialization. (F ) The tunneling between the ground states when the relaxation time
is long enough in the initialization. (G) The measured | ± Z〉 population oscillation. (H) The numerical simulation of the results above it. (I) The sequence for
observing the excited states tunneling with 5-μs relaxation time in initialization. (J) The tunneling between the excited states when the relaxation time is short.
(K ) The measured population oscillation between excited states. (L) The numerical simulation of the results above.

with the first CQR pulse. The QNDness is optimized with respect to the CQR
drive strengths shown in Fig. 7C, resulting in good separations shown by the
histogram in Fig. 7A. Such a quantum nondemolition readout can be utilized
to initialize the qubit through heralding. However, as shown in Fig. 7B and
discussed later in this section, the qubit states have to stay in the ground states
before heralding because such readout cannot distinguish the excited states
and the ground state in the same potential well.

The universal single-qubit control of the detuned-KCQ consists of a discrete
X(�/2) gate and continuous Z(�) rotation gates, both implemented via
deformation of the double-well pseudopotential. The Z(�) gates are realized
using a single-photon drive at frequency !S/2 to engineer a Hamiltonian
Ĥd = â†/2 + â∗/2. This Hamiltonian induces an energy splitting of

2Re[]� between the | ± Z〉 states, resulting in Rabi oscillations on the
equator of the Bloch sphere. Calibration and numerical simulations of the
Z(�) gates are detailed in SI Appendix, section 3. The X(�/2) gate, which
corresponds to coherent tunneling between the two pseudopotential wells, is
implemented by adiabatically lowering the energy barrier separating them. We
implement such gate by phase-modulating the two-photon stabilization drive
�2(t) = �2(0)e−ig(t) with g(t) defined as

g(t) = �0t ×

 − sin
(

3�
2 t/Tg

)
t ≤ Tg/3

−
f(t)

1−f(Tg)

(
f(t)− f(Tg)

)
t > Tg/3

, [14]
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where Tg is the gate time, �0 is the modulation depth, and f(t) =

exp
(
−

8(t−Tg/3)2

T2
g

)
follows a Gaussian profile. The asymmetric modulation

profile is chosen to minimize the gate error. Such phase modulation
adiabatically introduces a blue-detuning to the two-photon stabilization drive
and correspondingly, lowers the energy barrier of the pseudopotential to allow
the interwell tunneling, as shown in Fig. 7F.

We calibrate the X(�/2) gate with the sequence shown in Fig. 7E. A CQR
pulse (labeled “Herald”) initializes the qubit into |+ Z〉 state through heralding.
Then, two X(�/2) gate pulses with various modulation depth �0 and duration
are applied. Finally, another CQR pulse (labeled “Readout”) is applied to read
out the qubit state. The measured expectation of the Pauli Z operator 〈Ẑ〉
is shown in Fig. 7G, which clearly shows population oscillating coherently
between the | ± Z〉 states. The numerical simulation, based on solving the
time-dependent Schrödinger equations, is shown in Fig. 7H in good agreement
with the experimental results. Therefore, we calibrate the X(�/2) gate for a
detuned-KCQ by optimizing the gate time and the modulation depth to achieve
the largest 〈Ẑ〉 conversion. Importantly, a sufficiently long relaxation time (400
μs) is necessary for the initialization as discussed in the following.

The initialization of the detuned-KCQ is implemented through the CQR pulse
by heralding. The SNAIL nonlinear oscillator mode predominantly remains in the
vacuum state |0〉 with negligible thermal noise at low temperature. Therefore,
the resonant-KCQ can be initialized by adiabatically ramping up the two-photon
stabilization drive followed immediately by a CQR drive, which maps the vacuum
state to the cat state and then collapses it into | ± Z〉. However, this technique
fails for the detuned-KCQ because the finite detuning changes the energies of
SNAIL nonlinear oscillator states in the rotating frame. As shown in Fig. 7D, a
finiteΔ alters the spectrum in the rotating frame, causing |0〉 to no longer be the
ground state, while the cat states remain the ground states of the detuned-KCQ
Hamiltonian. Consequently, when the two-photon stabilization drive is ramped
up, the |0〉 state is mapped to the higher excited states instead of the ground
states. The subsequent CQR drive will then collapse the qubit into excited states
in one of the double wells of the pseudopotential, resulting in a failure to
initialize the qubit into | ± Z〉 states. To address this, it is crucial to introduce

sufficient relaxation time before applying the CQR drive, allowing the system to
decay into the degenerate ground states. This ensures the validity of preparing
the | ± Z〉 = | ± �〉 state through heralding.

To observe the effect of higher excited states, we applied a sequence similar
to that used for calibrating the X(�/2) gate to a detuned-KCQ system with
Δ = 2K, but with the relaxation time reduced to 5 μs, as shown in Fig. 7I.
Due to this shortened relaxation time, the detuned-KCQ states predominantly
occupy the excited states, and the pulse sequence captures the population
oscillation between these excited states within each well, as illustrated in Fig. 7J.
The experimental results, presented in Fig. 7K, show a reduced contrast and
tunneling occurring at a lower modulation depth due to the low lifetime and
high energy of the excited states, which is in excellent agreement with the
numerical simulation shown in Fig. 7L.

Data,Materials, andSoftwareAvailability. ZIP file data have been deposited
in data for paper entitled “Quantum Benchmarking of High-Fidelity Noise-Biased
Operations on a Detuned-Kerr-Cat Qubit” (https://doi.org/10.5281/zenodo.
16549003) (65).
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