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Out-of-time-ordered correlators (OTOCs) have received considerable recent attention as qualitative
witnesses of information scrambling in many-body quantum systems. Theoretical discussions of OTOCs
typically focus on closed systems, raising the question of their suitability as scrambling witnesses in
realistic open systems. We demonstrate empirically that the nonclassical negativity of the quasiprobability
distribution (QPD) behind the OTOC is a more sensitive witness for scrambling than the OTOC itself.
Nonclassical features of the QPD evolve with timescales that are robust with respect to decoherence and are
immune to false positives caused by decoherence. To reach this conclusion, we numerically simulate spin-
chain dynamics and three measurement protocols (the interferometric, quantum-clock, and weak-
measurement schemes) for measuring OTOCs. We target experiments based on quantum-computing
hardware such as superconducting qubits and trapped ions.
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Introduction.—Quantum many-body dynamics is scram-
bling when initially localized quantum information spreads
via entanglement through many degrees of freedom. Out-of-
time-ordered correlators (OTOCs) have been suggested as a
way to characterize scrambling across condensed-matter and
high-energy contexts [1–28]. Hence, investigating how to
measure OTOCs experimentally is crucial. Different OTOC-
measurement protocols have been proposed [29–32], and
some experimental success has been reported [33–36]. Yet
the protocols’ robustness in realistic, decoherent experimen-
tal settings has just started to be explored and is emerging as
an active area of research [36–41].
We study decoherence’s effects on OTOCs used to

witness information scrambling. We find that the OTOCs’
underlying quasiprobability distributions (QPDs) can more
robustly identify the key time scales that distinguish scram-
bling. These QPDs are extended Kirkwood-Dirac QPDs
[31,42–47]. They reduce to classical joint probability dis-
tributions over the eigenvalues of the OTOC operators when
the operators commute. Otherwise, the QPDs become non-
classical: individual quasiprobabilities can become negative,
exceed one, or become nonreal. This nonclassicality robustly
distinguishes scrambling from decoherence.
We study three OTOC-measurement protocols: the

(1) interferometric [30], (2) sequential-weak measurement
[31,47], and (3) quantum-clock [32] protocols. Scrambling
causes the OTOC to decay over a short time interval, then
remain small. Information leakage can reproduce this
behavior [38], since a decohered system entangles with
the environment. Quantum information spreads across
many degrees of freedom, but most are outside the system.
We therefore propose a modification to these protocols that

uses the (coarse-grained [31]) QPD behind the OTOC to
distinguish between scrambling and nonscrambling
dynamics despite decoherence.
Our Letter is organized as follows. We first define the

OTOC and its QPD. As a concrete example suitable for
simulation with qubit architectures, we consider a spin
chain switchable between scrambling and integrable
dynamics. Next, we introduce dephasing, modeled on
current superconducting-qubit technology, and we analyze
its effect on the OTOC and its QPD. We numerically
simulate the spin chain for each OTOC-measurement
protocol, and we compare the OTOC’s degradation by
decoherence. The simulations show that the QPD’s neg-
ativity distinguishes scrambling dynamics despite ambi-
guity in the OTOC.
OTOCs and their quasiprobabilities.—Quantum infor-

mation scrambling is related to the quantum butterfly
effect: localized operators’ supports grow under time
evolution by an appropriate nonintegrable Hamiltonian.
The operators come to have large commutators with most
other operators—even operators localized far from the
initially considered local operator. As an example, consider
a Pauli operator acting on one end of a spin chain. Another
Pauli operator, acting on the opposite end, probes the
propagation of quantum information. If the Hamiltonian is
scrambling, an increasing number of degrees of freedom
must be measured to recover the initially local information.
Below, we make this intuition and its relation to the OTOC
more precise.
Let H denote a quantum many-body system

Hamiltonian, W and V, local far-apart operators, and ρ,
a density matrix. The OTOC is defined as
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FðtÞ ≔ Tr½W†ðtÞV†WðtÞVρ�: ð1Þ

Here, WðtÞ ¼ UðtÞ†WUðtÞ is evolved in the Heisenberg
picture with the unitary evolution operator UðtÞ ≔
expð−iHtÞ. Initially, W and V commute: ½Wð0Þ; V� ¼ 0.
If W and V are unitary, then the OTOC is related to the
Hermitian square of their commutator:

CðtÞ ≔
�½WðtÞ; V�†

ð2i�Þ
½WðtÞ; V�

2i

�
¼ 1 − ReFðtÞ

2
: ð2Þ

Otherwise, the commutator’s square includes nonconstant
time-ordered correlators. A Hamiltonian that scrambles
information tends to grow the commutator’s magnitude.
This growth leads to a persistent smallness of ReFðtÞ. In
contrast, for a nonscrambling Hamiltonian, WðtÞ and V
approximately commute after a short recurrence time, as
information quickly recollects from other parts of the
system. ReFðtÞ revives to close to one.
W and V decompose as W ¼ P

w wΠW
w and V ¼P

v vΠV
v , where ΠW

w and ΠV
v are the projectors onto the

eigenspaces corresponding to the eigenvalues w and v. The
eigenspaces are degenerate, since W and V are local
operators and the system is large. FðtÞ can be expressed
as an average of eigenvalues [48],

FðtÞ ¼
X

v1;w2;v2;w3

v1w2v�2w
�
3p̃tðv1; w2; v2; w3Þ; ð3Þ

with respect to an extended Kirkwood-Dirac [42,43]
(coarse-grained) quasiprobability distribution (QPD)

p̃tðv1; w2; v2; w3Þ ≔ TrðΠWðtÞ
w3

ΠV
v2Π

WðtÞ
w2

ΠV
v1ρÞ: ð4Þ

p̃t was denoted by Ãρ in [31].
Equation (3) implies that the QPD p̃t exhibits the

OTOC’s timescales. Therefore, qualitative features of
OTOCs that reflect scrambling should have counterparts
in p̃t.
The QPD p̃t is complex and, like a classical probability

distribution, normalized:
P

v1;w2;v2;w3
p̃tðv1;w2;v2;w3Þ¼1.

Regions where p̃t becomes negative, exceeds one, or has a
nonzero imaginary part are nonclassical. We quantify these
regions’ magnitudes with the total nonclassicality of p̃t:

ÑðtÞ ≔
X

v1;w2;v2;w3

jp̃tðv1; w2; v2; w3Þj − 1: ð5Þ

As we will see, even in the presence of decoherence, the
total nonclassicality’s evolution distinguishes integrable
from nonintegrable Hamiltonians. The distinction allows
the QPD to signal scrambling robustly.
Spin chain.—We illustrate with a quantum Ising chain of

N qubits. For ease of comparison, we use the conventions
in Refs. [49–52]:

H ¼ −J
XN−1

i¼1

σziσ
z
iþ1 − h

XN
i¼1

σzi − g
XN
i¼1

σxi : ð6Þ

We set ℏ ¼ 1, such that energies are measured in units of J;
and times, in units of 1=J. We fix 2π=J ¼ 1 μs and
simulate two cases: (1) integrable case: h=J ¼ 0.0, g=J ¼
1.05 and nonintegrable case: h=J ¼ 0.5, g=J ¼ 1.05. These
values equal those in Ref. [31]. As in Ref. [31], W ¼ σz1,
and V ¼ σzN [53].
To map this Hamiltonian onto a physical qubit system,

e.g., an array of transmons [54,55], we interpret the
eigenstates of −σxi as a qubit’s energy eigenbasis. Each
qubit has an intrinsic energy splitting of 2g and couples
capacitively to its neighbors with energy J. Unless prepared
by a measurement, the qubit relaxes to a thermal state.
Therefore, as an initial state, we consider a Gibbs state at a
finite temperature T: ρT ¼ Z−1 expð−H=TÞ, with T=J ¼ 1,
Z ¼ Tr½ðexpð−H=TÞ�, and kB ¼ 1 [56]. Each qubit has a
ground-state population of ≈0.8. OTOCs are usually
evaluated on thermal states due to holographic interest in
the thermofield double state [3,4,6–10,12,13,17].
Decoherence.—We model decoherence with a Lindblad

master equation dρ=dt ¼ −i½H; ρ� þPNþna
i¼1 γiðLiρL

†
i −

1=2fL†
i Li; ρgÞ. Here, N denotes the number of spins and

na, the number of ancillas required for a given protocol. We
choose Li ¼ σzi and γi ¼ γ ¼ 1=ð2T�

2Þ. The operators Li
implement single-qubit dephasing at rates γi (dephasing
dominates the decoherence). However, this dephasing also
indirectly causes amplitude mixing due to the nondiagonal
terms in the Hamiltonian. The parameter T�

2 denotes the
observed exponential decay constant for the qubit coher-
ence from chip-dependent environmental fluctuations. We
have chosen an optimistic T�

2 ¼ 130 μs, plausible for
upcoming transmon hardware [57]. We interpret the
Lindblad equation as an average over the stochastic phase
jumps that could occur during each length-dt time step. At
each time step, a density matrix ρ updates according to

ρ ↦ dt
X
i

γiLiUðtÞρUðtÞ†L†
i þ L0UðtÞρUðtÞ†L†

0: ð7Þ

The no-phase-jump operator is L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − dt

P
iγiL

†
i Li

q
.

This model offers simplicity and numerical stability [58].
For each OTOC-measurement protocol, we replace the

ideal time evolution with Eq. (7) and assume that time
reversal implements only UðtÞ ↔ U†ðtÞ. We distinguish
between the total time elapsed in the laboratory, tL, and the
time t at which the OTOC is evaluated. Each simulated
reversal of t accumulates positive lab time tL; thus, every
protocol lasts for a unique tL. To simulate decoherence’s
effects on the QPD, we use the weak-measurement protocol
[31,47]. The other protocols can be adapted for QPD
measurements [31].
Simulation results and discussion.—Figure 1 shows the

real part of the OTOC, measured in the presence of
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decoherence: FIðtÞ, FWðtÞ, and FCðtÞ denote the OTOC
measured according to the interferometric [30], weak
measurement [31,47], and quantum-clock [32] protocols
[59]. These curves are compared to the ideal OTOC FðtÞ
measured in the absence of noise. These protocols differ in
the amounts of lab time required to measure FðtÞ: the
protocols need tLs that are at least 2t, 3t, and 4t,
respectively. As expected, OTOCs measured with long-
tL protocols decay the most, since they suffer from
decoherence the longest. The quantum-clock protocol’s
FCðtÞ is affected the most. Nonetheless, this protocol’s
essence—the implementation of time reversals via an
ancilla qubit—could be combined with a shorter-tL proto-
col (e.g., the interferometric protocol), to mitigate
decoherence [60].
Figures 1(a) and 1(b) show that decoherence hinders us

from easily distinguishing between integrable and non-
integrable Hamiltonians. The integrable-Hamiltonian OTOC
with decoherence decays due to information leaking, and
the nonintegrable-Hamiltonian OTOC revives. If we used
these two OTOCs’ qualitative behaviors, we would mis-
classify the Hamiltonians and incur a false positive, inferring
scrambling where there is none.
Distinguishing scrambling from integrable Hamiltonians

via the QPD is straightforward, despite decoherence
(Fig. 2). Decoherence damps the distribution’s oscillations,
and the different curves drift towards a common value (in
our example, between 0 and 0.1). Unlike in the integrable
case, the nonintegrable case’s quasiprobability shows a
persistent bifurcation that we call a pitchfork: around t ≈
15 μs quasiprobabilities that used to lie atop each at y ¼ 0
split. This pitchfork arises because scrambling breaks a
symmetry as it eliminates the QPD’s invariance under

certain permutations and negations of the QPD arguments
in Eq. (4) [31]. The symmetry breaking eliminates
the QPD’s constancy under certain interchanges, and
certain negations, of measurement outcomes in a weak-
measurement trial. We should expect this asymmetry to
surface in the total nonclassicality Ñt of Eq. (5). Since
information scrambling is related to many-body entangle-
ment, which is nonclassical, we expect the QPD’s non-
classicality to be a robust indicator of scrambling. Indeed,
damping shrinks the negative regions in Fig. 2. The
negative regions also show structure that mirrors qualitative
behavior of the OTOC: the decay of ReFðtÞ matches the
flourishing of the negativity; the revivals of ReFðtÞ mirror
the negativity’s disappearance. Yet the QPD provides
information absent from FðtÞ.
We plot ÑðtÞ in Fig. 3. The nonclassicality’s persistence

reflects sustained noncommutativity ofWðtÞ and V. Denote
by t̃� the point at which ÑðtÞ first deviates from zero [61];
by tm, the point at which the first maximum occurs; and by
tz, the time at which the first subsequent zero happens. For
the scrambling dynamics with decoherence in Fig. 3, tz −
tm is more than an order of magnitude longer than tm − t̃�.
For the nonscrambling dynamics, the two timescales are
comparable. In this case, and without dissipation, tz − tm is
longer than the simulation time. We thus conjecture that, if
tm − t̃� ≪ tz − tm, the dynamics is scrambling [62]. As
quantum information spreads throughout the system in a
time tm − t̃� ∝ N, if H is integrable, some information
recollects in a time tz − tm ∝ N. Hence, the total non-
classicality’s first peak should be approximately symmet-
rical. If the system dynamics is scrambling, such a
recollection would occur after a much longer time
[17,63,64]. ÑðtÞ should display strong temporal asymmetry

(a) (b)

FIG. 1. Evolution of measured OTOC, FðtÞ ¼ hW†ðtÞV†WðtÞVi, with and without decoherence. Values measured with three different
protocols are compared against the ideal value: interferometric FIðtÞ, weak FWðtÞ, and quantum clock FCðtÞ. To simulate near-term
experiments, the system consists of N ¼ 5 spins in an Ising chain with (a) a transverse field and (b) a transverse and a longitudinal field,
with parameters detailed in the text. The system starts in a Gibbs state ρT ¼ Z−1 expð−H=TÞ with T=J ¼ 1 and Z ¼ Tr½expð−H=TÞ�.
The system undergoes environmental dephasing of each qubit with a decay constant of T�

2 ¼ 130 μs. The local operators W ¼ σz1 and
V ¼ σzN . These plots highlight the difficulties in unambiguously distinguishing between (a) nonscrambling and (b) scrambling
Hamiltonians in an experimental setting with decoherence.
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(a) (b)

(c) (d)

FIG. 2. Evolution of measured Rep̃t with and without decoherence, using the sequential-weak-measurement protocol. The QPD,

p̃tðv1; w2; v2; w3Þ ¼ TrðΠWðtÞ
w3

ΠV
v2Π

WðtÞ
w2

ΠV
v1ρÞ, underlies the OTOC, FðtÞ ¼ P

v1w2v�2w
�
3p̃tðv1; w2; v2; w3Þ, where V ¼ P

vΠv and
W ¼ P

wΠw. Of the 16 QPD values, four examples are shown. The numeric labels in the legend have the form abcd, where
v1 ¼ ð−1Þa, w2 ¼ ð−1Þb, v2 ¼ ð−1Þc, and w3 ¼ ð−1Þd. The shaded regions show nonclassical behavior of the QPD.

(a) (b)

FIG. 3. Total nonclassicality, ÑðtÞ ¼ P jp̃tðv1; w2; v2; w3Þj − 1, of the QPD, p̃t, showing sensitivity to decoherence for (a) integrable
and (b) scrambling systems. Comparing two timescales can reveal scrambling. The duration between the onset of nonclassicality
(t̃� ∼ 10 μs) and the first maximum (tm ∼ 20 μs) is roughly constant across both plots. The area between tm and the next zero (tz) is
shaded. For the integrable Hamiltonian, tz − tm ∼ tm − t̃� ∼ 10 μs. For the nonintegrable Hamiltonian, tz − tm remains an order of
magnitude larger (tz − tm ∼ 100 μs), even with decoherence. In the decoherence-free scrambling case, ÑðtÞ remains nonzero for at least
four orders of magnitude of time longer than in the nonscrambling case.
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about its first maximum. We see this lack of symmetry in
the scrambling case’s ÑðtÞ in Fig. 3(b).
We see also our conjecture’s role in the presence of

decoherence: because of the significant differences in the
scrambling-case timescales, the asymmetry persists despite
the dissipation’s suppression of ÑðtÞ. FðtÞ offers no such
quantitative insight: ÑðtÞ is useful because it precisely
identifies when nonclassical behavior arises and disappears.
Conclusions and outlook.—We propose that a more

robust witness can be found in the nonclassical part of
the QPD p̃t behind the OTOC. The total nonclassicality
Ñ of p̃t helps distinguish integrable from scrambling
Hamiltonians in the presence of decoherence. One can
distinguish clearly between scrambling and nonscrambling
systems by comparing two timescales of Ñ. The duration
between the birth of nonclassicality, at the time t̃�, and the
nonclassicality’s first local maximum, at tm, is related to the
time needed by quantum information to spread throughout
the system. The spreading’s persistence governs the dura-
tion between tm and the death of nonclassicality, at tz.
Nonscrambling dynamics exhibit revivals of classicality on
timescales tm − t̃� ≈ tz − tm, while scrambling dynamics
take much longer. This distinction is seen clearly in the total
nonclassicality ÑðtÞ. Unlike the OTOC, ÑðtÞ is robust with
respect to experimental imperfections like decoherence.
Characterizing this time’s scaling with system size, and
checking whether the scaling can be consistent with doubly
exponential expectations inspired by the Poincaré recur-
rence time [17,63,64], is a subject for future research.
This study of decoherence highlights two opportunities

for improving the robustness and convenience of the QPD-
measurement scheme in Ref. [31]. First, the weak mea-
surements’ coupling might be strengthened, along the lines
in Ref. [60]. Second, the scheme in Ref. [39] might be
applied to renormalize away experimental errors.
Another opportunity for future study is whether scram-

bling breaks symmetries in OTOC QPDs defined in terms
of W and V operators other than qubit Pauli operators. An
interesting choice to study next would be the Sachdev-Ye-
Kitaev (SYK) model [7,65]. The SYK model consists of
Majorana fermions, whose experimental realizations are
being pursued assiduously [66–72]. As the SYK model
scrambles maximally quickly, like black holes, it has been
hoped to shed light on quantum gravity. The calculational
tools available for SYK merit application to the OTOC
QPD, which may shed new light on scrambling at the
intersection of condensed matter and high-energy physics.

J. R. G. A. was supported by a fellowship from the
Grand Challenges Initiative at Chapman University.
N. Y. H. is grateful for funding from the Institute for
Quantum Information and Matter, an NSF Physics
Frontiers Center (NSF Grant No. PHY-1125565) with
support from the Gordon and Betty Moore Foundation
(GBMF-2644); a Graduate Fellowship from the Kavli

Institute for Theoretical Physics, supported by the NSF
under Grant No. NSF PHY-1125915; the Walter Burke
Institute for Theoretical Physics at Caltech; and a Barbara
Groce Graduate Fellowship. J. D. was partially supported
by the Army Research Office (ARO) Grants No. W911NF-
15-1-0496 and No. W911NF-1-81-0178. The authors wish
to thank Paul Dieterle, Poul Jessen, Andrew Keller, Oskar
Painter, and Mordecai Waegell for helpful discussions.

*Corresponding author.
gonzalezalonso@chapman.edu

[1] A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical method
in the theory of superconductivity, Sov. Phys. JETP 28,
1200 (1969).

[2] A. Kitaev, Hidden correlations in the Hawking radiation and
thermal noise, in Proceedings of the Fundamental Physics
Prize Symposium (2014).

[3] S. H. Shenker and D. Stanford, Black holes and the butterfly
effect, J. High Energy Phys. 03 (2014) 067.

[4] S. H. Shenker and D. Stanford, Multiple shocks, J. High
Energy Phys. 12 (2014) 46.

[5] S. A. Hartnoll, Theory of universal incoherent metallic
transport, Nat. Phys. 11, 54 (2015).

[6] S. H. Shenker and D. Stanford, Stringy effects in scram-
bling, J. High Energy Phys. 05 (2015) 132.

[7] A. Kitaev, A simple model of quantum holography, in
Proceedings of the KITP Strings Seminar and Entanglement
(2015).

[8] D. A. Roberts, D. Stanford, and L. Susskind, Localized
shocks, J. High Energy Phys. 03 (2015) 051.

[9] D. A. Roberts and D. Stanford, Diagnosing Chaos Using
Four-Point Functions in Two-Dimensional Conformal Field
Theory, Phys. Rev. Lett. 115, 131603 (2015).

[10] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[11] I. L. Aleiner, L. Faoro, and L. B. Ioffe, Microscopic model
of quantum butterfly effect: Out-of-time-order correlators
and traveling combustion waves, Ann. Phys. (Amsterdam)
375, 378 (2016).

[12] M. Blake, Universal Charge Diffusion and the Butterfly
Effect in Holographic Theories, Phys. Rev. Lett. 117,
091601 (2016).

[13] M. Blake, Universal diffusion in incoherent black holes,
Phys. Rev. D 94, 086014 (2016).

[14] Y. Chen, Universal logarithmic scrambling in many body
localization, arXiv:1608.02765.

[15] A. Lucas and J. Steinberg, Charge diffusion and the butterfly
effect in striped holographic matter, J. High Energy Phys. 10
(2016) 143.

[16] D. A. Roberts and B. Swingle, Lieb-Robinson Bound and
the Butterfly Effect in Quantum Field Theories, Phys. Rev.
Lett. 117, 091602 (2016).

[17] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in
quantum channels, J. High Energy Phys. 02 (2016) 4.

[18] S. Banerjee and E. Altman, Solvable model for a dynamical
quantum phase transition from fast to slow scrambling,
Phys. Rev. B 95, 134302 (2017).

PHYSICAL REVIEW LETTERS 122, 040404 (2019)

040404-5

https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1038/nphys3174
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1103/PhysRevLett.117.091601
https://doi.org/10.1103/PhysRevLett.117.091601
https://doi.org/10.1103/PhysRevD.94.086014
http://arXiv.org/abs/1608.02765
https://doi.org/10.1007/JHEP10(2016)143
https://doi.org/10.1007/JHEP10(2016)143
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1103/PhysRevB.95.134302


[19] R. Fan, P. Zhang, H. Shen, and H. Zhai, Out-of-time-order
correlation for many-body localization, Sci. Bull. 62, 707
(2017).

[20] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality, diffusion
and chaos in generalized Sachdev-Ye-Kitaev models,
J. High Energy Phys. 05 (2017) 125.

[21] D. A. Roberts and B. Yoshida, Chaos and complexity by
design, J. High Energy Phys. 04 (2017) 121.

[22] X. Chen and T. Zhou, Operator scrambling and quantum
chaos, arXiv:1804.08655.

[23] Y. Huang, Y.-L. Zhang, and X. Chen, Out-of-time-ordered
correlators in many-body localized systems, Ann. Phys.
(Amsterdam) 529, 1600318 (2017).

[24] E. Iyoda and T. Sagawa, Scrambling of quantum informa-
tion in quantum many-body systems, Phys. Rev. A 97,
042330 (2018).

[25] B. Yoshida and A. Kitaev, Efficient decoding for the
Hayden-Preskill protocol, arXiv:1710.03363.

[26] C.-J. Lin and O. I. Motrunich, Out-of-time-ordered corre-
lators in a quantum Ising chain, Phys. Rev. B 97, 144304
(2018).

[27] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini, A.
Silva, and R. Fazio, Scrambling and entanglement spreading
in long-range spin chains, Phys. Rev. B 98, 134303 (2018).

[28] N. Yunger Halpern, A. Bartolotta, and J. Pollack, Reconcil-
ing two notions of quantum operator disagreement: Entropic
uncertainty relations and information scrambling, united
through quasiprobabilities, arXiv:1806.04147.

[29] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M.
Stamper-Kurn, J. E. Moore, and E. A. Demler, Interfero-
metric approach to probing fast scrambling, arXiv:1607
.01801.

[30] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Measuring the scrambling of quantum information, Phys.
Rev. A 94, 040302 (2016).

[31] N. Yunger Halpern, B. Swingle, and J. Dressel, Quasi-
probability behind the out-of-time-ordered correlator, Phys.
Rev. A 97, 042105 (2018).

[32] G. Zhu, M. Hafezi, and T. Grover, Measurement of many-
body chaos using a quantum clock, Phys. Rev. A 94, 062329
(2016).

[33] K. X. Wei, C. Ramanathan, and P. Cappellaro, Exploring
Localization in Nuclear Spin Chains, Phys. Rev. Lett. 120,
070501 (2018).

[34] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Measuring out-of-time-order
correlations and multiple quantum spectra in a trapped-
ion quantum magnet, Nat. Phys. 13, 781 (2017).

[35] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng,
and J. Du, Measuring Out-of-Time-Order Correlators on a
Nuclear Magnetic Resonance Quantum Simulator, Phys.
Rev. X 7, 031011 (2017).

[36] K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B.
Yoshida, N. Y. Yao, and C. Monroe, Verified quantum
information scrambling, arXiv:1806.02807.

[37] S. V. Syzranov, A. V. Gorshkov, and V. Galitski, Out-of-
time-order correlators in finite open systems, Phys. Rev. B
97, 161114 (2018).

[38] Y.-L. Zhang, Y. Huang, and X. Chen, Information scram-
bling in chaotic systems with dissipation, arXiv:1802.04492.

[39] B. Swingle and N. Yunger Halpern, Resilience of scram-
bling measurements, Phys. Rev. A 97, 062113 (2018).

[40] B. Yoshida and N. Y. Yao, Disentangling scrambling and
decoherence via quantum teleportation, arXiv:1803.10772.

[41] M. Knap, Entanglement production and information scram-
bling in a noisy spin system, arXiv:1806.04686.

[42] J. G. Kirkwood, Quantum statistics of almost classical
assemblies, Phys. Rev. 44, 31 (1933).

[43] P. A. M. Dirac, On the analogy between classical and
quantum mechanics, Rev. Mod. Phys. 17, 195 (1945).

[44] Y. P. Terletsky, The limiting transition from quantum to
classical mechanics, J. Exp. Theor. Phys. 7, 1290 (1937).

[45] H. Margenau and R. N. Hill, Correlation between measure-
ments in quantum theory, Prog. Theor. Phys. 26, 722
(1961).

[46] S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N.
Mukunda, and R. Simon, Wigner–Weyl correspondence in
quantum mechanics for continuous and discrete systems—a
dirac-inspired view, J. Phys. A 39, 1405 (2006).

[47] N. Yunger Halpern, Jarzynski-like equality for the
out-of-time-ordered correlator, Phys. Rev. A 95, 012120
(2017).

[48] We index the W and V eigenvalues in Eq. (3) following the
conventions in Refs. [31,47].

[49] G. P. Berman, F. Borgonovi, F. M. Izrailev, and V. I.
Tsifrinovich, Delocalization border and onset of chaos in
a model of quantum computation, Phys. Rev. E 64, 056226
(2001).

[50] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and
Weak Thermalization of Infinite Nonintegrable Quantum
Systems, Phys. Rev. Lett. 106, 050405 (2011).

[51] A. Gubin and L. F. Santos, Quantum chaos: An introduction
via chains of interacting spins 1=2, Am. J. Phys. 80, 246
(2012).

[52] H. Kim and D. A. Huse, Ballistic Spreading of Entangle-
ment in a Diffusive Nonintegrable System, Phys. Rev. Lett.
111, 127205 (2013).

[53] Note that σx with an integrable Hamiltonian can simulate
scrambling [26].

[54] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y.
Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P.
Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M.
Martinis, Coherent Josephson Qubit Suitable for Scalable
Quantum Integrated Circuits, Phys. Rev. Lett. 111, 080502
(2013).

[55] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from
the Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[56] Additionally, this allows us to circumvent the difficul-
ties associated with experimentally preparing an infinite-
temperature Gibbs state.

[57] I. Siddiqi (private communication).
[58] M. Khezri, J. Dressel, and A. N. Korotkov, Qubit measure-

ment error from coupling with a detuned neighbor in circuit
QED, Phys. Rev. A 92, 052306 (2015).

[59] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.040404 for details
on how to numerically simulate each OTOC-measurement
protocol.

PHYSICAL REVIEW LETTERS 122, 040404 (2019)

040404-6

https://doi.org/10.1016/j.scib.2017.04.011
https://doi.org/10.1016/j.scib.2017.04.011
https://doi.org/10.1007/JHEP05(2017)125
https://doi.org/10.1007/JHEP04(2017)121
http://arXiv.org/abs/1804.08655
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1103/PhysRevA.97.042330
https://doi.org/10.1103/PhysRevA.97.042330
http://arXiv.org/abs/1710.03363
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.98.134303
http://arXiv.org/abs/1806.04147
http://arXiv.org/abs/1607.01801
http://arXiv.org/abs/1607.01801
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
http://arXiv.org/abs/1806.02807
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1103/PhysRevB.97.161114
http://arXiv.org/abs/1802.04492
https://doi.org/10.1103/PhysRevA.97.062113
http://arXiv.org/abs/1803.10772
http://arXiv.org/abs/1806.04686
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1088/0305-4470/39/6/014
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevE.64.056226
https://doi.org/10.1103/PhysRevE.64.056226
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1119/1.3671068
https://doi.org/10.1119/1.3671068
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.080502
https://doi.org/10.1103/PhysRevLett.111.080502
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.92.052306
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404


[60] J.Dressel, J. R.GonzálezAlonso,M.Waegell, andN.Yunger
Halpern, Strengthening weak measurements of qubit out-of-
time-order correlators, Phys. Rev. A 98, 012132 (2018).

[61] With this definition, t̃� is close to the scrambling time t� at
which ReFðtÞ first deviates significantly from one.

[62] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.040404 for details
on how the total non classicality and its time scales vary
with h=J.

[63] P. Bocchieri and A. Loinger, Quantum recurrence theorem,
Phys. Rev. 107, 337 (1957).

[64] L. Campos Venuti, The recurrence time in quantum me-
chanics, arXiv:1509.04352.

[65] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[66] F. Hassler, Majorana qubits, in Quantum Information
Processing. Lecture Notes of the 44th IFF Spring School
2013, edited by D. P. DiVincenzo (Verlag des Forschungs-
zentrums, Jülich, 2013).

[67] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon,M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.Marcus,

K. Flensberg, and J. Alicea, Milestones Toward Majorana-
Based Quantum Computing, Phys. Rev. X 6, 031016
(2016).

[68] M. T. Deng, S. Vaitiekénas, E. Prada, P. San-Jose, J. Nygård,
P. Krogstrup, R. Aguado, and C. M. Marcus, Majorana non-
locality in hybrid nanowires, Phys. Rev. B 98, 085125
(2018).

[69] S. Vaitiekėnas, M. T. Deng, J. Nygård, P. Krogstrup, and
C. M. Marcus, Effective g-Factor in Majorana Wires, Phys.
Rev. Lett. 121, 037703 (2018).

[70] R. M. Lutchyn, E. P. a. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Realizing Majorana
zero modes in superconductor-semiconductor heterostruc-
tures, Nat. Rev. Mater. 3, 52 (2018).

[71] F. J. Gómez-Ruiz, J. J. Mendoza-Arenas, F. J. Rodríguez, C.
Tejedor, and L. Quiroga, Universal two-time correlations,
out-of-time-ordered correlators, and Leggett-Garg inequal-
ity violation by edge Majorana fermion qubits, Phys. Rev. B
97, 235134 (2018).

[72] T. E. O’Brien, P. Rożek, and A. R. Akhmerov, Majorana-
Based Fermionic Quantum Computation, Phys. Rev. Lett.
120, 220504 (2018).

PHYSICAL REVIEW LETTERS 122, 040404 (2019)

040404-7

https://doi.org/10.1103/PhysRevA.98.012132
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040404
https://doi.org/10.1103/PhysRev.107.337
http://arXiv.org/abs/1509.04352
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevB.98.085125
https://doi.org/10.1103/PhysRevB.98.085125
https://doi.org/10.1103/PhysRevLett.121.037703
https://doi.org/10.1103/PhysRevLett.121.037703
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1103/PhysRevB.97.235134
https://doi.org/10.1103/PhysRevB.97.235134
https://doi.org/10.1103/PhysRevLett.120.220504
https://doi.org/10.1103/PhysRevLett.120.220504

