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Strengthening weak-value amplification with recycled photons
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We consider the use of cyclic weak measurements to improve the sensitivity of weak-value amplification
precision measurement schemes. Previous weak-value experiments have used only a small fraction of events,
while discarding the rest through the process of “postselection.” We extend this idea by considering recycling of
events which are typically unused in a weak measurement. Here we treat a sequence of polarized laser pulses
effectively trapped inside an interferometer using a Pockels cell and polarization optics. In principle, all photons
can be postselected, which will improve the measurement sensitivity. We first provide a qualitative argument for
the expected improvements from recycling photons, followed by the exact result for the recycling of collimated
beam pulses, and numerical calculations for diverging beams. We show that beam degradation effects can be
mitigated via profile flipping or Zeno reshaping. The main advantage of such a recycling scheme is an effective
power increase, while maintaining an amplified deflection.
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I. INTRODUCTION

A long-standing goal in optics is the development and
improvement of precision optical metrology. In the first
paper on weak values in 1988 [1], Aharanov, Albert, and
Vaidman suggested that the weak-value effect might be used
as an amplifier in order to measure (in the case they were
considering) the value of a small magnetic field by looking
at the anomalously large deflection of a beam of atoms
traversing a Stern-Gerlach apparatus. The general validity of
this weak-value effect was later shown experimentally in an
optical context by Ritchie et al. [2], who replaced the magnetic
spin with transverse polarization, and by Brunner et al. [3],
who illustrated the pervasiveness of the weak-value effect in
common optical telecom networks.

More recently, the amplification properties of this weak-
value effect have been exploited in similar optical systems
to precisely measure beam deflection [4–10], phase shifts
[11], frequency shifts [12], time delays [13–15], and even
temperature shifts [16], by using either polarization or which-
path degrees of freedom. Although these experiments can be
described using classical wave optics [17], the analysis using
quantum techniques provides additional insight and allows
for future extension to cases with no classical counterpart.
Moreover, a wave optics approach may be less conceptually
transparent due to the many spatiotemporal modes required
for the analysis. Hence, we shall continue to use more flexible
and compact quantum operator methods in this work as well.

Our theoretical analysis begins with the Rochester setup of
Dixon et al. [5], where the tilt of a moving mirror within an
interferometer is detected from the signal on a split detector.
While this setup has a subpicoradian resolution with only
milliwatts of laser power, there are a number of ways this
can be improved to yield even greater sensitivity.

A generic shortcoming of weak-value-related metrological
techniques is the fact that only a small fraction of the events
are “postselected,” while the vast majority of events are
intentionally thrown away. The main goal of the current work
is to investigate how this situation can be further improved

if those events are recycled. This will be done by taking
photons which are not postselected and reinjecting them back
into the interferometer, so that eventually, every photon can
be postselected in principle. We will see that this strategy
does indeed lead to an improvement in the signal-to-noise
ratio of the desired parameter, effectively given by the power
increase of the split-detection signal. Moreover, since the
existing single-pass weak-value amplification already achieves
the sensitivity of standard measurement techniques (such as
homodyne detection) but with lower technical noise in the
signal to noise ratio [6,18], the improvements from recycling
should exceed the sensitivity of the standard techniques. We
note that because we employ not just a single pass, but
many passes of a given photon through the interferometer,
the simple weak-value formula used in the first paper on the
subject [5] will no longer suffice, and we must develop a
theoretical formalism for multiple passes that will account for
the amplification of the deflection, as well as the probability
of reaching the detector after some number of traversals.

While the recycling scheme is an important advance in its
own right (and can be generically applied to all weak-value
amplification schemes), it also lends itself to further enhance-
ment if combined with other precision metrology techniques
currently in use. For example, the inclusion of a spatial filter
or parity-flipping element to Zeno-stabilize the beam or the
use of a squeezed reference beam [19–22] could significantly
reduce degradation effects and quantum noise, respectively.
The recycling technique, therefore, sets the stage for combined
weak value–quantum light amplification strategies for future
research. Furthermore, although our present work focuses on
a pulsed recycling method, possible extensions to continuous-
wave operation may allow for the use of power recycling [23]
and signal recycling [24] techniques, both of which are in use
in modern gravitational-wave detectors [25,26].

This paper is organized as follows. In Sec. II we give a
heuristic estimation of the expected gains from a recycling
setup based on qualitative power considerations and accessible
laboratory conditions. In Sec. III we analytically compute
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FIG. 1. (Color online) Simple cyclic weak-measurement scheme.
A laser emits a pulse of horizontal (H) polarization through a
polarizing beam splitter (PBS), which travels through an active
Pockels cell (PC) that rotates the polarization to vertical (V), after
which it enters a Sagnac interferometer through a 50:50 beam
splitter. Inside the interferometer the combination of a half-wave
plate (HWP) and Soleil-Babinet compensator (SBC) rotates the pulse
polarization back to H with a relative tunable phase shift of φ between
the clockwise- (�) and counterclockwise- (�) traveling paths. The
piezo-driven mirror imparts a transverse momentum kick k that differs
by a sign for the � and � paths. A split detector is placed at the dark
port to measure a resulting pulse deflection. The H-polarized part of
the pulse that exits the bright port is rotated again by the active PC
back to V before being confined by the PBS and mirror to return the
pulse to the interferometer through the PC, now inactive.

the exact recycling solution for a particular setup under the
assumption that the beam can stay perfectly collimated. In
Sec. IV we relax this assumption with a numerical treatment
including diffraction effects. We summarize our conclusions
in Sec. V.

II. QUALITATIVE ARGUMENTS

Our baseline for comparison will be the Rochester
continuous-wave (cw) Sagnac interferometric scheme de-
scribed in [5,6,17]. We wish to improve the detected signal-
to-noise ratio (SNR) by using a combination of pulsed laser
operation with the same average power output and a design
that sends the undetected portion of each pulse back into
the interferometer. Such a setup is illustrated in Fig. 1
for reference. However, before committing to a particular
recycling design we can make fairly general estimations about
the increases in sensitivity that we expect from any similar
recycling scheme.

A. Characteristic time scales

The constraints on how much we can increase the power
collected by the dark-port detector in order to improve the
measurement sensitivity depend crucially on the following
relative time scales involved, which are also summarized in
Table I:

(1) The pulse duration τ being emitted by the laser. For
typical lasers this can vary between 1 ns and 5 fs reasonably,
which correspond to pulse lengths of 0.3 m and 1.5 μm,
respectively.

(2) The repetition period T = 1/f of the laser. For typical
lasers the repetition rate f can vary from 1 Hz to several GHz
reasonably.

(3) The traversal period Tr of the interferometer setup.
This is determined by the physical size of the setup. As an

TABLE I. Relevant time scales for a recycling experiment.

Symbol Description Estimate

τ Laser pulse duration 5 fs–1 ns
T Laser repetition period 1 ns–1 s
Tr Traversal period 1 ns–10 ns
Tg Gating time 2 ns
Tp Minimum interpulse spacing τ + Tg

upper-bound estimate, a 3-m-long recycling setup will have a
total period of 10 ns.

(4) The gating time Tg for adding new pulses to the
interferometer. This will determine the minimum interpulse
spacing Tp = τ + Tg inside the interferometer. This also must
be strictly less than the time between pulses emitted by the laser
Tg < T − τ so that every new laser pulse can be injected. For
a Pockels cell, Tg ≈ 2 ns.

We assume in what follows that τ < Tp < Tr , so that at
least one pulse can be trapped inside the interferometer. We
also assume that the average power output P of the pulsed
laser is equal to the average power of a comparison cw beam.
As a result, the average power of each individual pulse will be
increased by a factor T/τ from the reference cw beam.

B. Detector SNR

The SNR is a useful indicator for the sensitivity of the
measurement, since a signal producing an SNR of unity
indicates the smallest practically resolvable signal [20]. The
detected SNR is defined as the ratio of the collected signal to
the square root of the variance of that collected signal. Our
raw signal 〈S〉 is a split detection of the transverse profile of
the beam, which measures the difference in photon number
collected by each side of the detector, thereby providing
information about the horizontal displacement of the beam.
For small displacements, the variance of the split-detected
signal is well approximated by the second moment, which is
in turn proportional to the total photon number for position-
uncorrelated photons (see, for example, Ref. [20]).

The total accumulated split-detected signal scales linearly
with the average collected energy, which can be factored into
the average power at the detector Pd multiplying the collection
duration t . The variance will be similarly proportional to Pdt ,
so the SNR will scale as Pdt/

√
Pdt = √

Pdt . Hence, the SNR
can be increased either by waiting for a longer duration t or
by increasing the average power Pd at the dark-port detector.
Our recycling scheme proposes to increase the average power
collected within a fixed duration to increase the sensitivity.

In the original interferometric weak-value scheme, the
detector collected a power of Pd = ηP , where η was the
postselected fraction of the total laser power P coming from
the dark port. If we recycle the unused light, however, the
average power Pd collected at the detector after rT recycling
passes in a laser repetition period T will have the modified
form

Pd =
rT∑

n=1

(1 − η)n−1ηP = [1 − (1 − η)rT ]P, (1)
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where η is the fraction of the input power that exits the dark
port of the interferometer after each traversal, and rT is the
number of recycled pulses that hit the detector. Here we have
ignored optical losses and detector inefficiencies for clarity.
The power collected at the detector after a single traversal is
ηP and the SNR scales as

√
Pd , so the net SNR gain factor

will be √
Pd

ηP
=

√
1 − (1 − η)rT

η
. (2)

For a small postselection probability—such as those used
in weak-value experiments—then we can expand (2) around
η = 0 to find√

Pd

ηP
≈ √

rT

[
1 − (rT − 1)

η

4

]
+ O(η2). (3)

For η(rT − 1) � 1, then we can neglect the attenuation of the
pulse to see an approximate

√
rT SNR scaling.

For sufficiently large rT , however, the factor (2) saturates
to the constant value

√
1/η. This saturation stems from the

progressive attenuation of the recycled pulse. Furthermore,
the smaller the postselection probability gets, the larger we
can make the possible SNR gain over a single pass. In this
limit, however, Pd → P according to (1) and all the photons
will be collected. Note that despite the large gain in power (2)
at the detector, the best SNR that one can obtain still scales
according to the standard quantum limit.

The measured signal at the detector may be additionally
modified by geometric and propagation effects, which we can
encapsulate by an overall factor ξ (rT ) that depends on rT . The
total SNR gain factor over an unrecycled pulse will then be
ξ (rT )

√
Pd/ηP . For the sake of comparison, we will initially

ignore these effects on the signal, so we will approximate
ξ (rT ) ≈ 1 in our qualitative arguments. We will see in Sec. III
that for a collimated beam ξ (rT ) will approximate unity for
small rT but will eventually converge to zero for large rT .
Corrections to this effect will be discussed in Secs. III B4
and III B5, where we will see that one can maintain a
measurable signal for a collimated beam by inverting photons
about the optical axis on each traversal or Zeno-stabilizing
the beam with a spatial filter. We shall also see in Sec. IV that
ξ (rT ) can exceed unity for a carefully chosen pulse divergence,
which can compensate for the attenuation effects and recover
the approximate

√
rT scaling for a much wider range of rT .

C. Recycled pulse number

We can compute the number of pulses rT that hit the
detector per laser repetition period T from two factors. First,
each trapped pulse can traverse the interferometer roughly r �
T/Tr times each repetition period. Each traversal contributes
one additional pulse impact to the detector. Second, one can
accumulate a maximum of p � Tr/Tp = Tr/(τ + Tg) pulses
that are trapped inside the interferometer. Hence the total
number of detector impacts rT = pr per period T will be
bounded by T/(τ + Tg). Correspondingly, the maximum SNR
gain factor (2) that we can expect from power considerations
will also be bounded entirely by the relative time scales and
the postselection probability.

In practice, not every recycled pulse will contribute con-
structively to the SNR. Indeed, as shown in (2) and as we shall
see in Sec. III, there will be some maximum number rmax of
constructive pulse impacts before the SNR saturates or decays.
To maximize the SNR gain in such a case, the pulse should be
discarded and replaced by a fresh pulse. Hence, the number of
practical detector collections rT will be less than the maximum
estimation rT = prmax � T/(τ + Tg), so the number of pulses
p that can fit inside the interferometer will become important.
Both pulse stabilization techniques and diverging lenses can
increase the practical range of rmax, which we will discuss in
Secs. III B4, III B5, and IV.

D. Practical estimates

Using the Pockels cell as a gate, we expect Tg ≈ 2 ns.
Assuming a short pulse τ � Tg , then the interpulse spacing
will be Tpc ≈ Tgc = 0.6 m. It follows that the maximum
number of pulses inside the interferometer will be p ≈ Tr/Tg .
Assuming a large 3 m setup, Tr ≈ 10 ns, so p ≈ 10/2 = 5
will be a generous upper bound to the number of pulses that
we can expect to fit inside any interferometer. For contrast, the
smallest setup that fits only a single pulse will be Tr = Tp, or
Tpc ≈ 0.6 m in length.

As shown in Sec. III B3, without loss or stabilization we
can expect rmax � 80 to be an optimistic upper bound for
a constructive number of recycling passes. The maximum
number of pulse impacts rT = prmax per period T that we
expect with the largest setup of p = 5 pulses is thus rT � 400.
Therefore, we can expect an SNR gain to span the range from
a maximum of

√
400 = 20 over a single pass for very small

postselection probability η to
√

1/η for larger η according
to (2). Since rmax � T/Tr and Tr ≈ 10 ns for the 3 m setup,
the laser repetition period must be T ≈ 400 ns, implying a
repetition rate of f ≈ 2.5 MHz. For contrast, the smallest
setup of 0.6 m can fit only p = 1 pulse, so rT � 80. The SNR
gain thus ranges from a maximum of

√
80 ≈ 9 over a single

pass to
√

1/η. The 0.6 m setup has recycling period Tr ≈ 2ns,
so it must have a laser repetition period T � 160 ns, or rate
f � 6.25 MHz. These laser specifications should be readily
achievable in the laboratory.

III. ANALYTIC RESULTS

A. Sagnac interferometer

Following the experiment described in [5,6,17], we extend
the schematic to pulsed laser operation and pulse recycling. As
shown in Fig. 1, the addition of a Pockels cell (PC) and polariz-
ing beam splitter (PBS) allows the unused portion of each pulse
that exits the bright port of the Sagnac interferometer to be
redirected back inside the interferometer to complete multiple
traversals. The combination of a half-wave plate (HWP) and
Soleil-Babinet compensator (SBC) provides a tunable relative
phase φ between the clockwise- (�) and counterclockwise-
(�) propagating paths of the interferometer, but also flips the
net polarization of each pulse. As a result, the PC must be active
as each pulse initially enters the bright port and when each
pulse exits the bright port again; however, it must be inactive as
each pulse returns to the bright port after being confined by the
PBS and mirror. By injecting new pulses exactly when older
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pulses exit the bright port, one can minimize the interpulse
spacing inside the interferometer to roughly a single gating
time.

We also briefly note that the HWP and SBC can be removed
in favor of a vertical tilt to provide the relative phase φ.
With this variation, the PC turns on and off only once per
repetition period in order to inject a new pulse into the
interferometer, as opposed to cycling for every pulse traversal.
This variation does not change the interpulse spacing inside
the interferometer, however, so it provides no SNR benefits,
although it does provide a technical advantage due to the
minimized number of PC cycles per laser repetition period T .

B. Pulse recycling

Because there is no important interaction between distinct
pulses in the recycling scheme, the SNR gains are funda-
mentally determined by the effects of single-pulse recycling.
Therefore, we shall consider in some detail what happens to a
single-pulse profile after r passes through the interferometer
under the assumption that the pulse remains collimated. We
will relax the collimation assumption numerically in Sec. IV.

1. Pulse states

Assume that the clockwise-propagating state of the pulse
in the Sagnac interferometer is denoted |�〉 and the counter-
clockwise-propagating state is denoted |�〉. Then the state
that enters the interferometer through the 50:50 beam splitter
will have the form |ψ+〉 = 1√

2
(|�〉 + i|�〉). This will also

be the postselection state for the bright port of the interfer-
ometer. Similarly, the postselection state for the dark port
of the interferometer will have the orthogonal form |ψ−〉 =

1√
2
(|�〉 − i|�〉). We also define the which-path operator as

Ŵ = |�〉〈�| − |�〉〈�|.
Assume that the initial transverse pulse profile is given by

a state |ϕ〉. We normalize the state of the transverse pulse
profile so that its squared norm will encode the average
photodetection rate. Hence, measuring a pulse with a detector
for the pulse duration τ will produce N = τ ||ϕ||2 photon
impacts upon the detector per pulse on average. This choice
of normalization will allow simple computation of the SNR
without multiparticle Fock space calculations (e.g., as used
in [20]).

The total initial pulse state that enters the interferometer
will have the product form |�0〉 = |ψ+〉|ϕ〉. For simplicity
we suppress the polarization of the state and any propagation
effects.

The traversal through the interferometer performs three
operations on the state. The first is the passage through the
SBC and HWP, which creates a relative phase shift φ between
the paths that can be described by the unitary operator ÛSBC =
eiφŴ/2. The second is the tilting piezo mirror, which imparts
a transverse momentum kick k to the pulse, described by the
unitary operator ÛP = e−ikŴ x̂ , where h̄ = 1 and the transverse
position operator x̂ generates a momentum translation k. The
third is a generic uniform loss with probability γ , described
by a nonunitary loss operator, L̂ = √

1 − γ 1̂.
The state of the pulse profile as it arrives back at

the 50:50 beam splitter after one traversal has the form

|�1〉 = L̂ÛPÛSBC|�0〉. After the pulse traverses the 50:50
beam splitter, it splits into two paths once more. The dark
port projects the photon onto the |ψ−〉 state, and the bright
port projects the photon onto the |ψ+〉 state. Hence, we obtain
the following two states in the bright and dark ports, respec-
tively: |�±〉 = |ψ±〉(M̂±|ϕ〉), where we have factored out the
measurement operators M̂± = 〈ψ±|L̂ÛPÛSBC|ψ+〉 that affect
the transverse profile of the pulse in each case. Written out
explicitly, these measurement operators are diagonal in the
position basis and have remarkably simple forms,

M̂+ =
√

1 − γ cos(φ/2 − k x̂), (4a)

M̂− = i
√

1 − γ sin (φ/2 − k x̂) , (4b)

where we have used 〈ψ±|Ŵn|ψ+〉 = [1 ± (−1)n]/2.

2. Number densities

Using the measurement operators (4), the exact pulse state
that exits the dark port after r traversals through the interfer-
ometer will be |�r

−〉 = |ψ−〉[M̂−(M̂+)r−1|ϕ〉]. Therefore, the
number density nr (x) of photons that hit the dark-port detector
at a transverse position x on the rth pulse traversal is

nr (x) = τ |〈x|�r
−〉|2 = n0(x)(1 − γ )r

× sin2

(
φ

2
− kx

)
cos2(r−1)

(
φ

2
− kx

)
, (5)

where n0(x) = τ |〈x|ϕ〉|2 is the number density for the input
pulse.

The total number density n̄r (x) that accumulates on the
dark-port detector after r traversals of the pulse will be the
sum of the number densities for the r traversals,

n̄r (x) =
r∑

j=1

nj (x)

= n0(x)
(1 − γ ){1 − [(1 − γ ) cos2(φ/2 − kx)]r}

1 + γ cot2(φ/2 − kx)
. (6)

Hence the total number of photons that hit the detector after r

traversals is Nr = ∫
dx n̄r (x). Furthermore, if we compare (6)

to the heuristically estimated detector power (1) when γ → 0,
we see that the spatially resolved version of the postselection
probability is given by η ↔ sin2(φ/2 − kx).

In the limit of an infinite number of trials r → ∞, the final
term in (6) vanishes and we are left with the number density,

n̄∞(x) = n0(x)
1 − γ

1 + γ cot2(φ/2 − kx)
. (7)

For no loss, γ → 0, the modulating factor from the measure-
ment cancels and the original pulse is completely recovered,
which is surprising since for the first pass there is an anoma-
lously large position shift. This means that if all the photons
in a perfectly collimated pulse are collected through repeated
recycling, then the information about the measurement will
be erased due to a progressive smearing—or walk-off—effect
of the interference pattern, as illustrated in Figs. 2–4. Such
a result indicates that a collimated pulse should be thrown
away or reshaped after a finite number of traversals in order to
maximize the information collected at the detector regarding
the momentum kick k and the induced phase shift φ.
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FIG. 2. (Color online) Strongly misaligned regime with φ < 1 < kσ . Left: the transverse pulse profile nr (x) that impacts the dark-port
detector on the first (blue, solid) and second (red, dashed) traversals. Right: the accumulated transverse pulse profile n̄r (x) on the dark-port
detector after a single (blue, solid) and ten (red, dashed) traversals. For this regime the interference pattern covers the entire profile, subsequent
pulses are strongly attentuated, and the interference of the accumulated profile is slowly filled in.

3. Gaussian pulse

To gain some intuition about the collected number den-
sity (6), consider an initial pulse with a zero-mean Gaussian
transverse profile.

n0(x) = N√
2πσ 2

e−x2/2σ 2
. (8)

In what follows, we will consider three specific parameter
regimes for the Gaussian pulse: (1) the strongly misaligned
regime φ < 1 < kσ ; (2) the weak-value regime kσ < φ < 1;
(3) the inverse weak-value regime φ < kσ < 1. These regimes
are illustrated in Figs. 2, 3, and 4, respectively.

In the strongly misaligned regime φ < 1 < kσ , the profile
that exits the dark port on each traversal (5) is shown in Fig. 2.
The interference pattern covers the entire beam profile. On the
first pass, the intensity of the peaks matches the maximum in-
tensity of the beam. Subsequent passes are strongly attenuated
due to the small overlap with the complementary interference
pattern in the beam that remains inside the interferometer. The
accumulated profile n̄r (x) in (6) steadily shrinks the width of
the interference dips with increasing traversal number until
the entire beam profile is recovered. The strongly misaligned
regime is unlikely to be useful in a precision measurement due

to the large value of k; we have included it in our discussion
for completeness and to emphasize that the single and double
lobes that appear in the other regimes are not simple beam
shifts, but appear from an interference effect.

For kσ < φ < 1, we obtain the weak-value parameter
regime considered in [5]. The interference pattern in the
number density nr (x) indicated in (5) leaves a single displaced
peak that resembles a shifted Gaussian that is shown in
Fig. 3. Subsequent traversals have similar intensities, but
progressively walk toward the center with increasing r . The
amplified signal comes from the anomalously large shift, so
this walk-off degrades the amplification properties of the setup
with increasing r .

The walk-off effect arises because the beam that remains
inside the interferometer has had a small fraction of light
removed by the postselection from one side, which causes
a complementary displacement in the opposing direction. This
complementary shift counter-acts the dark-port displacement
on subsequent traversals, which makes the output walk back
toward the center of the original profile. Hence, after r

traversals the accumulated weak-value signal n̄r (x) (6) will
resemble r times the intensity of a single traversal, but will
also be degraded due to the walk-off effect. The walk-off is

3 2 1 0 1 2 3
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r 1…4
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FIG. 3. (Color online) Weak-value regime with kσ < φ < 1, with parameters chosen to exaggerate the walk-off effect. Left: the transverse
single-lobed pulse profile nr (x) that impacts the dark-port detector on the first four traversals in order of (blue, solid), (red, dashed), (purple,
dot-dashed), and (brown, dotted). Right: the accumulated transverse pulse profile n̄r (x) on the dark-port detector after the first four traversals,
with the same color coding. For this regime, the dark-port profile resembles a single shifted Gaussian that gradually walks back toward the
center on multiple traversals with some attenuation, eventually recovering the original profile. For more realistic parameters, such as those used
in [5], the walk-off effect is smaller per traversal.
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FIG. 4. (Color online) Inverse weak-value regime with φ < kσ < 1, with parameters chosen to exaggerate the walk-off effect. Left: the
transverse double-lobed pulse profile nr (x) that impacts the dark-port detector on the first four traversals in order of (blue, solid), (red, dashed),
(purple, dot-dashed), and (brown, dotted). Right: the accumulated transverse pulse profile n̄r (x) on the dark-port detector after the first four
traversals, with the same color coding. For this regime, there are two lobes that very gradually walk back toward the center on multiple traversals
with some attenuation to eventually recover the original beam profile. For more realistic parameters, such as those used in [11], the walk-off
effect is smaller per traversal.

shown exaggerated in Fig. 3, but is a smaller effect per traversal
with more realistic parameters, such as those in [5]. However,
even though the effect per traversal is smaller, for a sufficiently
large number of traversals the signal will always be completely
erased by this walk-off effect according to (7).

For φ < kσ < 1, we enter the inverse weak-value regime
considered in [11] and originally observed in [2]. The weak-
value assumptions that produce the single peak break down
and (5) produces the double-lobed profile shown in Fig. 4. On
multiple traversals the peaks gradually walk back toward the
center, as in the weak-value regime. However, the forced zero
in the center will stabilize the profile, so that after r traversals
the accumulated profile n̄r (x) (6) will more closely resemble r

times the intensity of a single traversal than in the weak-value
regime. The walk-off is shown exaggerated in Fig. 4, but is also
a smaller effect per traversal with more realistic parameters,
such as those used in [11].

These different regimes for weak-value amplification mea-
surements are also carefully explored in the recent review
paper [27] and were mentioned earlier in [28].

4. Parity flips

A simple technique for compensating for the profile erosion
on multiple traversals is to invert the profile around the x = 0
line so that each new traversal partially cancels the walk-off
from the previous traversal. This can be accomplished by
introducing a parity-flipping optic represented by a parity
operator P̂x that modifies the profile by replacing x → −x.
This results in a net replacement of the operator M̂+ →
P̂x M̂+ in (4). After an even number of traversals 2r , the
accumulated number density (6) then has the modified form,

n̄2r (x) = n0(x) sin2

(
φ

2
− kx

)[
1 + cos2

(
φ

2
− kx

)]

× 1 − [
cos2

(
φ

2 − kx
)

cos2
(

φ

2 + kx
)]r

1 − cos2
(

φ

2 − kx
)

cos2
(

φ

2 + kx
) , (9)

where we have set γ → 0 for clarity. Unlike (6) where we
do not flip the output of the bright port on each traversal, this
expression does not yield the original input profile in the limit

of large r . Instead it yields

n̄∞(x) = n0(x)
sin2

(
φ

2 − kx
)[

1 + cos2
(

φ

2 − kx
)]

1 − cos2
(

φ

2 − kx
)

cos2
(

φ

2 + kx
) , (10)

which maintains a signal, in contrast with the case of no parity
flips on a collimated beam.

5. Zeno stabilization

Another way to reduce transverse walk-off effects and
thereby restore the signal-to-noise ratio to the power-limited
scaling of (2) in Sec. II B is to utilize the physics of the quantum
Zeno effect by using an optical filter to project the transverse
profile back into its original state. The advantage of the Zeno
stabilization over parity flipping is that the former does not
swap the transverse locations of the photons; this may be
important when using quantum states of light, e.g., squeezed or
entangled states, whose benefits rely on maintaining transverse
correlations between the photons.

At every round of the recycling with Zeno stabilization,
the beam is passed through a spatial filter, so if the beam is
in its original profile, it will pass through the filter perfectly;
however, if the wave form is distorted, then a photon in that
mode will have some probability to be absorbed. In passing
through the filter on each traversal, a photon in this mode will
experience only a small disturbance to the transverse profile,
and the state will tend to “freeze” in its original state with only
a small rate of being projected into an orthogonal state (in this
case, being absorbed by the filter). We note that this technique
will work regardless of the nature of the disturbance, provided
it is small in each pass.

To see how this works, let us consider the Gaussian
transverse state in (8) for a single photon (N = 1). The
corresponding transverse spatial state for this photon has the
form

φ0(x) = 〈x|φ0〉 = 1

(2πσ 2)1/4
exp

(
− x2

4σ 2

)
. (11)
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After one traversal through the interferometer, the state
emerging from the bright port according to (4) is

|φ1〉 = M̂+|φ0〉 =
√

1 − γ cos(φ/2 − k x̂)|φ0〉. (12)

To compute the reshaping probability, we renormalize this
state by dividing out its norm

〈φ1|φ1〉 = (1 − γ )
∫

dx|φ0(x)|2 cos2(φ/2 − kx)

= (1 − γ )(1 + e−2k2σ 2
cos φ)/2 (13)

to produce the normalized state |φ1,n〉 = |φ1〉/
√〈φ1|φ1〉.

If we now make a projective measurement with a spatial
filter of the shape |〈x|φ0〉|2, the photon will be restored to the
state |φ0〉 with a probability P1 = |〈φ0|φ1,n〉|2. The probability
can be calculated from

〈φ0|φ1,n〉 = 1√
N1

∫
dx|φ0(x)|2 cos(φ/2 − kx)

=
√

2e−k2σ 2/2 cos(φ/2)√
1 + e−2k2σ 2 cos φ

. (14)

We are interested in the case where both φ and kσ are less
than 1. Consequently, we can expand P1 to leading order in kσ

and φ,

P1 = 1 − (kσ )4/2 − (kσ )2φ2/4 + · · · , (15)

where we drop terms of higher order in powers of (kσ )2 and
φ2. In the weak-value regime where kσ < φ < 1, the second
term in (15) may be dropped. In the inverse weak-value regime
where φ < kσ < 1, the third term in (15) may be dropped. In
either case, for repeated cycles consisting of M independent
measurements the probability PM = P M

1 of being projected
back into state 〈x|φ0〉 will decay approximately exponentially
as

PM = exp[−M�], (16)

where � ≈ (kσ )4/2 + (kσ )2φ2/4 is an effective decay rate.
We can therefore make M ∼ MZ = 1/� measurements before
a photon is typically absorbed by the reshaping filter. This is
the manifestation of the Zeno effect, where by making repeated
projections, the state is kept in its initial state for much longer
than would happen otherwise.

This Zeno number MZ is many more cycles that we will
be able to make before the detector measures all the photons
exiting the dark port. For example, if we chose the exaggerated
values kσ = 0.1 and φ = π/8 as in Fig. 3 then this gives a
Zeno number of MZ ≈ 2.3 × 103, which is still an order of
magnitude larger than we require for the detection physics.

C. Split-detected signal

In order to measure the transverse momentum kick k or the
phase shift φ we compare the sides of the transverse profile
using a split detector. As outlined in Sec. II B, the accumulated
split-detected signal after r pulse repetitions of time duration
τ is given by the difference of the number densities on each
side,

〈S〉r =
∫ ∞

0
dx n̄r (x) −

∫ 0

−∞
dx n̄r (x). (17)

To measure the displacement of the pulse, the signal should be
subsequently normalized by the total photon number 〈S〉r /Nr

in order to extract the averaged behavior.
For small displacements the variance of the raw split-

detected signal is the second moment to a good approximation,

(
S)2
r ≈ 〈S2〉r = ∫

dx n̄r (x) = Nr, (18)

which is the total number of photons that have impacted at
the dark-port detector. Hence, the SNR that has accumulated
after the rth traversal (Rr ) will be given by

Rr = 〈S〉r
(
S)r

= 〈S〉r√
Nr

. (19)

For the zero-mean Gaussian (8) these quantities can be
computed exactly for the first traversal,

N1 = (1 − γ )N

2

(
1 − e−(2kσ )2/2 cos φ

)
, (20a)

〈S〉1 = − (1 − γ )N

2
e−(2kσ )2/2Erfi(

√
2kσ ) sin φ, (20b)

〈S〉1

N1
= −Erfi(

√
2kσ )

e−(2kσ )2/2 sin φ

1 − e−(2kσ )2/2 cos φ
, (20c)

R1 = −
√

(1 − γ )N
Erfi(

√
2kσ )e−(2kσ )2/2 sin φ√

2(1 − e−(2kσ )2/2 cos φ)
, (20d)

where Erfi(x) = Erf(ix)/i = (2/
√

π )
∫ x

0 et2
dt is the imagi-

nary error function. We now specialize these exact solutions
to the two amplification regimes under consideration and
indicate numerically how larger traversal numbers behave in
each regime.

1. Weak-value regime

When kσ < φ < 1 then we can neglect terms of order (kσ )2

in (20) to find

N1 = (1 − γ )N sin2(φ/2), (21a)

〈S〉1 = −
√

2

π
(1 − γ )Nkσ sin φ, (21b)

〈S〉1

N1
= −

√
2

π
2kσ cot(φ/2), (21c)

R1 = −
√

2

π

√
(1 − γ )N [2kσ cos(φ/2)]

= −
√

2

π

√
N1[2kσ cot(φ/2)]. (21d)

These linear-order solutions correctly match the weak-
value analyses made in [5,6,17], as expected. Due to the factor
cot(φ/2) in the normalized split detection 〈S〉1 /N1, setting a
known small φ provides an amplification factor for measuring
an unknown small k. This regime gets its name from the fact
that this amplification factor is the imaginary part of the weak
value Ww = 〈ψ−|Ŵ |ψφ〉/〈ψ−|ψφ〉 = i cot(φ/2) of the which-
path operator Ŵ with initial state |ψφ〉 = ÛSBC|ψ+〉 and
postselection state |ψ−〉. The normalized signal for this
parameter regime is shown in the left plot of Fig. 5 as a function
of kσ , demonstrating the linear response.
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FIG. 5. (Color online) Normalized split-detection response for a collimated pulse. Left: response for the weak-value regime as a function
of kσ with fixed φ, where kσ < φ < 1, and with parameters consistent with Ref. [5]. The accumulated signal is shown for traversal numbers
r = 1 (blue, solid), r = 5 (red, dashed), r = 10 (purple, dot-dashed), and r = 20 (brown, dotted). Right: response for the inverse weak-value
regime as a function of φ/π with fixed k, where φ < kσ < 1, and with parameters consistent with Ref. [11]. The accumulated signal is shown
for the same traversal numbers and color coding. Although the walk-off effects at large traversal numbers change the slope in both regimes,
the linear response is preserved. Hence, one can calibrate the slope through repeated experiments with a fixed number of traversals per laser
period. The slope is negative here since the signal is negative in Eqs. (20).

We can reproduce the dominant SNR gain factor for small
postselection probability by neglecting the walk-off effects and
the power attenuation. To do this, we expand the accumulate
profile n̄r (x) in (6) to first order in kσ and second order in φ

to obtain

n̄r (x) = rc(γ,r)n0(x)

[
− kxφ +

(
φ

2

)2]
, (22)

c(γ,r) = (1 − γ )[1 − (1 − γ )r ]

rγ
, (23)

where limγ→0 c(γ,r) = 1.
The only r dependence in the number density is in the

numeric prefactor rc(γ,r), which effectively scales the total
photon number N → rc(γ,r)N . Using this scaling, the result
(21) for the split detector will hold for any r to second
order in φ and first order in k. Hence, the SNR should
scale as

√
Nrc(γ,r) when walk-off and power attenuation

effects are neglected. When γ → 0, this recovers the dominant√
r SNR enhancement factor that we found to zeroth order in

the postselection probability of (2) in Sec. II B from power
considerations.

However, the walk-off effects and power attenuation
combine to reduce the actual SNR below this optimistic
level. To see this, consider the solid blue curve in the left
plot of Fig. 6, which shows the split-detected SNR gain
versus traversal number for the weak-value regime. The SNR
gain for any sufficiently small kσ is universal, but plateaus
quickly due to the beam degradation from the walk-off. Even
worse, for sufficiently large traversal number r the signal
will eventually decline and then converge to zero due to the
erasure effect implied by (7), so the SNR gain factor will also
correspondingly decay to zero.

The power scaling in (2) can be recovered, however, if the
walk-off is corrected with the parity flipping method discussed
in Sec. III B4. The normalized signal produced with the
parity-flip correction—illustrated in the left plot of Fig. 7—has
an identical slope for any traversal number, demonstrating the
simple power-scaling behavior. This correction is illustrated
as the dot-dashed red curve in the left plot of Fig. 6, which
exactly overlaps the power-scaling curve illustrated as the
dashed black curve. If the walk-off is corrected with Zeno
stabilization instead, then the signal slope will be identical for

20 40 60 80 100 120 140
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8

Rr R1

k 10 4

16

0 20 40 60 80 100 120 140
r
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10
Rr R1

k 0.1

256π

FIG. 6. (Color online) SNR gain versus traversal number r for a collimated pulse. Left: the SNR gain for the weak-value regime kσ < φ < 1
with kσ = 10−4 and φ = π/16. The uncorrected beam with walk-off (blue, solid) shows clear degradation with traversal number, while the
beam corrected with parity flipping (red, dashed) as in Sec. III B4 matches the simple power-scaling law exactly (black, dashed) from Eq. (2).
Note that Zeno stabilization will identically produce this power-scaled SNR by construction. Right: the SNR gain for the inverse weak-value
regime φ < kσ < 1 with kσ = 0.1 and φ = π/256. The uncorrected double-lobed beam with walk-off (blue, solid) shows somewhat less
degradation than the weak-value regime due to the forced zero in the profile; however, the double-lobed beam corrected with parity flipping
(red, dashed) manages to exceed the simple power-scaling law (black, dashed), as well as the scheme with Zeno stabilization.
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FIG. 7. (Color online) Normalized split-detection response for a collimated pulse stabilized by parity flipping, using the same color coding
as in Fig. 5. Left: response for the weak-value regime as a function of kσ for fixed φ, where kσ < φ < 1. All traversal numbers r have the
same linear response due to the parity-flip stabilization; Zeno stabilization produces the same result. Right: response for the inverse weak-value
regime as a function of φ/π for fixed k, where φ < kσ < 1. The linear response acquires a steeper slope for larger traversal number using
parity-flip stabilization; Zeno stabilization, however, would result in identical slopes for any r .

any traversal number by construction, and the SNR gain will
also exactly follow the power-scaling curve in (2).

2. Inverse weak-value regime

If φ < kσ < 1, then the approximation to linear order in
kσ will break down, as shown earlier in Sec. III B3. For this
regime, we keep linear order in φ and second order in kσ in
(20) to find

N1 = (1 − γ )N (kσ )2, (24a)

〈S〉1 = −
√

2

π
(1 − γ )Nkσφ, (24b)

〈S〉1

N1
=

√
2

π

(
kσ

3
− 1

kσ

)
φ, (24c)

R1 =
√

2

π

√
(1 − γ )N

(
5

6
(kσ )2 − 1

)
φ

=
√

2

π

√
N1

(
5

6
kσ − 1

kσ

)
φ. (24d)

In contrast to the previous approximation, the 1/k term
in the normalized signal 〈S〉1/N1 leads to an amplification in
measuring an unknown φ given a known small k. Indeed, this
regime was used in Refs. [11] for exactly this purpose. In the
preprint version of Ref. [11] it was noted that φ ≈ 2 ImW−1

w is
the inverse of the weak value present in the weak-value regime
for small φ, which motivates our name for this parameter
regime; this inverted relationship has also been rediscovered
more recently in Ref. [27]. The normalized signal for this
parameter regime is shown in the right plot of Fig. 5 as a
function of φ, demonstrating the linear response.

Again, we can reproduce the dominant SNR gain factor
for small postselection probability by neglecting the walk-
off effects and the power attenuation, which can be done by
expanding n̄r (x) to second order in kσ and first order in φ to
obtain

n̄r (x) = rc(γ,r)n0(x)(−kxφ + k2x2), (25)

with the same c(γ,r) as in (23).
As with the weak-value regime, the only r dependence in

the number density is in the numeric prefactor rc(γ,r), which
effectively scales the total photon number N → rc(γ,r)N .

Using this scaling, the result (24) for the split detector will
hold for any r to second order in k and first order in φ.
Hence, the SNR will scale as

√
Nrc(γ,r) when walk-off and

power attenuation effects are neglected. When γ → 0, this
also recovers the dominant

√
r SNR enhancement factor that

we found to zeroth order in the postselection probability of (2)
in Sec. II B from power considerations.

As before, the walk-off and power attenuation effects
reduce the SNR gain below this optimistic level. Consider
the solid blue curve in the right plot of Fig. 6, which shows the
exact split-detected SNR gain versus traversal number for
the inverse weak-value regime. As anticipated in Sec. III B3,
the forced zero in the center of the double-lobed profile
naturally stabilizes the beam to produce a saturated SNR for
more traversals than the weak-value regime. However, the SNR
still plateaus relatively quickly before eventually decaying to
zero for a sufficiently large number of traversals r without
additional stabilization.

Similarly, the degradation from walk-off can be completely
reversed by employing the parity-flipping technique. The dot-
dashed red curve in the right plot of Fig. 6 actually exceeds the
simple power scaling law illustrated as the dashed black curve
due to an additional accumulation of momentum information
on each subsequent traversal. Moreover, the normalized signal
shown in the right plot of Fig. 7 shows a corresponding increase
in the slope of SNR vs φ with traversal number.

IV. DIVERGING PULSE

By assuming a collimated beam, we have so far neglected
beam propagation effects in the analysis, as well as any lens
effects that could further change the detection physics. In order
to incorporate these effects, we now alter our measurement
operators and pursue a numerical approach. We find that these
effects may slightly enhance the SNR gains from recycling
before saturation due to the finite detector size, but do not
fundamentally alter the basic power-scaling behavior. For that
reason, it will be sufficient to illustrate only the weak-value
regime as an example.

Extending the collimated analysis in Sec. III to include
beam propagation leads to a replacement of the measure-
ment operators with M̂± → M̂

′
± = Û� M̂±Û�, where Û� =

exp(−i p̂2�/2k0), k0 is the carrier momentum of the pulse,
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TABLE II. Parameters used for numerical computations. � is half
the length of the interferometer, k is the momentum kick from the
mirror, σ is the input beam width, k0 is the carrier momentum, γ is
the loss per traversal, and d is the half-width of the split detector.

Symbol Numerical value

� 1.5 m
σ 1 mm
k 1 × 10−3 m−1

k0 8 × 106 m−1

γ 0.01
d 1 cm

and � is the propagation length from piezo to 50:50 beam
splitter [29]. The number density (5) will then involve the
composite measurement operator

M̂
′
−(M̂

′
+)r−1 = Û� M̂−Û�(Û� M̂+Û�)r−1. (26)

Adding a diverging lens with focal length si also modifies
the initial state with an operator ÛL = exp(ik0 x̂2/2si). Hence,
powers of the following modified operators will appear in the
full solution:

Û� M̂− = ie−i p̂2�/2k0 sin(φ/2 − k x̂), (27a)

Û
2
� M̂+ = e−i p̂2�/k0 cos(φ/2 − k x̂), (27b)

Û�ÛL = e−i p̂2�/2k0eik0 x̂2/2si , (27c)

which can be simplified recursively, as detailed in
Appendix A. The effect of a diverging lens is considered for
comparison with the unrecycled experiment in Ref. [5], where
such a lens was able to enhance sensitivity.

Table II shows the parameters which describe the laser
and experimental geometry. Our choice of k0 corresponds
to the 780–800 nm lasers used in [5,6,11], and the 3 m
interferometer length � is taken from the generous upper-bound
estimate discussed in Sec. II as a worst-case scenario for
beam divergence effects. For the weak-value regime of small
kσ and φ such that kσ < φ < 1, we found that it was
more computationally efficient to expand the sine and cosine
functions in (27) to second order in k and fourth order in φ, as
shown in Appendix B. To test the validity of this truncation,
we initially set the interferometer length � to zero so that
a comparison could be made with the previously calculated
collimated solutions.

We restrict our attention to the SNR gains achieved by
recycling a single pulse for r traversals, since adding more
pulses leads to a simple scaling of the single-pulse result.
The SNR gains for different choices of initial diverging
lens are shown in Fig. 8, where they are compared to the
ideal power-scaling curve that we expect from our qualitative
considerations given by (2). In all cases, the expected gains
roughly follow the qualitative power-scaling rule for a large
number of traversals before saturating due to the beam growing
larger than the finite size of the split detector. Note that the
beam divergence mitigates the SNR decay that was observed
for the collimated case, even without beam stabilization due
to flipping or Zeno reshaping.
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16

si 1,5,10,

π

Rr R1

FIG. 8. (Color online) The effect of propagation and different
diverging lens choices on the SNR of the weak-value regime with
kσ = 10−6 and φ = π/16. In order of (blue, solid), (red, dashed),
(purple, dot-dashed), and (brown, dotted) we show weak initial
diverging lenses with extreme focal lengths si = −1 m,−5 m,−10 m,
and no lens. The (black, dashed) curve shows the scaling given by
power considerations in Eq. (2). Here R1 refers to the SNR of a
single unrecycled pulse with an optimally chosen focal length of
si = −0.5 m, while Rr is the accumulated SNR over r traversals for
the indicated lens choices.

V. CONCLUSION

By investigating the optical design shown in Fig. 1, we
have shown how a single optical pulse can be trapped inside
the interferometer until the photons all exit the dark port
and are postselected, greatly boosting the sensitivity of the
precision measurement. The added power accumulated at
the detector within a fixed duration of time is the dominant
source of sensitivity gain. Further increases are achievable by
trapping multiple pulses in the interferometer simultaneously.
The number of trapped pulses is limited by the length of the
pulses, the gating frequency of current Pockels cells, and the
physical size of the interferometer.

We carefully analyzed the case of a collimated beam and
showed that repeated postselections cause a walk-off effect
in the recycled pulse, which tends to diminish the SNR.
However, we also showed that these walk-off effects can
be easily corrected by Zeno reshaping, or by a parity flip,
which reflects the beam around its optic axis on each traversal.
Somewhat surprisingly, the gains with parity correction can
even exceed those expected from the power scaling. Including
propagation effects does not destroy the sensitivity gain shown
for the collimated case, but instead can produce additional
enhancement.

While these sensitivity gains alone are a substantial im-
provement over the original idea, the combination of these
techniques with other established metrology techniques—such
as the use of a squeezed reference beam—could further
increase the sensitivity beyond that indicated here. These
considerations have motivated our treatment using quantum
operator methods, rather than classical wave optics, even
though the latter is an equally valid approach for a coherent
laser source.
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APPENDIX A: RECURSIVE SIMPLIFICATION

Using Eqs. (26) and (27) from above, an exact recursive
simplification can be constructed. Written explicitly in the
momentum basis we have

Û� M̂−(Û
2
� M̂+)r−1 =

(
1

2

)r ∫
dp|p〉e−i�p2/2k0

×
r∑

j=−r

aj (r,p)eijφ/2〈p + jk|, (A1)

where the functions aj (r,p) are given by the recursion relation

aj (r,p) = aj−1(r − 1,p)e−i�[p+(j−1)k]2/k0

+ aj+1(r − 1,p)e−i�[p+(j+1)k]2/k0 . (A2)

The overall measurement operator is then given simply
by multiplying the unitary operators Û� and ÛL from the
right. Note that each pulse retains the phase and momentum
information accumulated from previous traversals.

Given an input Gaussian profile as in (8), we find

〈x|�r
−〉 =

(
1

2

)r( 2

πa2

)1/4

β

×
∫

dp eipxe−i�p2/2k0e−i�(p+k)2/k0

×
r∑

j=−r

aj (r,p)eijφ/2e−i�(p+jk)2/2k0e−β2(p+jk)2
, (A3)

with

β =
√

σ 2si

si − 2ik0σ 2
. (A4)

The solution with no initial diverging lens is given by
taking the limit si → ∞, which modifies Eq. (A3) with the
replacement β → σ . Similarly, setting � = 0 recovers the
collimated solution, as expected.

APPENDIX B: NUMERICAL TRUNCATION

Truncating the measurement operators that include propa-
gation effects to second order in k and fourth order in φ for the
weak-value regime produces the expressions

Û� M̂− =
∫

dp|p〉e−ip2�/2k0

×
[
iφ

2
− iφ3

48
+ k∂p − kφ2

8
∂p + ik2φ

4
∂2
p

]
〈p|,
(B1a)

Û
2
� M̂+ =

∫
dp|p〉e−ip2�/k0

×
[

1 − φ2

8
+ φ4

384
+ ikφ

2
∂p − ikφ3

48
∂p

+ k2

2
∂2
p − k2φ2

16
∂2
p

]
〈p|. (B1b)

These expansions can be numerically iterated more easily
than the full solution, using the initial Gaussian profile (8) as
an input.

[1] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett.
60, 1351 (1988); I. M. Duck, P. M. Stevenson, and E. C. G.
Sudarshan, Phys. Rev. D 40, 2112 (1989).

[2] N. W. M. Ritchie, J. G. Story, and R. G. Hulet, Phys. Rev. Lett.
66, 1107 (1991).

[3] N. Brunner, A. Acin, D. Collins, N. Gisin, and V. Scarani, Phys.
Rev. Lett. 91, 180402 (2003).

[4] O. Hosten and P. Kwiat, Science 319, 787 (2008).
[5] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys.

Rev. Lett. 102, 173601 (2009).
[6] D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys.

Rev. A 80, 041803 (2009).
[7] M. D. Turner, C. A. Hagedorn, S. Schlamminger, and J. H.

Gundlach, Opt. Lett. 36, 1479 (2011).
[8] M. Pfeifer and P. Fischer, Opt. Express 19, 16508 (2011).
[9] J. M. Hogan, J. Hammer, S.-W. Chiow, S. Dickerson, D. M. S.

Johnson, T. Kovachy, A. Sugarbaker, and M. A. Kasevich, Opt.
Lett. 36, 1698 (2011).

[10] X. Zhou, Z. Xiao, H. Luo, and S. Wen, Phys. Rev. A 85, 043809
(2012).

[11] D. J. Starling, P. B. Dixon, N. S. Williams, A. N. Jordan, and J. C.
Howell, Phys. Rev. A 82, 011802(R) (2010); arXiv:0912.2357.

[12] D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys.
Rev. A 82, 063822 (2010).

[13] N. Brunner and C. Simon, Phys. Rev. Lett. 105, 010405
(2010).

[14] G. Strübi and C. Bruder, Phys. Rev. Lett. 110, 083605 (2013).
[15] G. I. Viza, J. Martı́nez-Rincón, G. A. Howland, H. Frostig,

I. Shromroni, B. Dayan, and J. C. Howell, arXiv:1304.0029.
[16] P. Egan and J. A. Stone, Opt. Lett. 37, 4991 (2012).
[17] J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and

A. N. Jordan, Phys. Rev. A 81, 033813 (2010).
[18] A. Feizpour, X. Xingxing, and A. M. Steinberg, Phys. Rev. Lett.

107, 133603 (2011).
[19] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[20] S. M. Barnett, C. Fabre, and A. Maı̂tre, Eur. Phys. J. D 22, 513

(2003).
[21] N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre,

H.-A. Bachor, and C. Fabre, Phys. Rev. Lett. 88, 203601
(2002).

023821-11

http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevD.40.2112
http://dx.doi.org/10.1103/PhysRevLett.66.1107
http://dx.doi.org/10.1103/PhysRevLett.66.1107
http://dx.doi.org/10.1103/PhysRevLett.91.180402
http://dx.doi.org/10.1103/PhysRevLett.91.180402
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1364/OL.36.001479
http://dx.doi.org/10.1364/OE.19.016508
http://dx.doi.org/10.1364/OL.36.001698
http://dx.doi.org/10.1364/OL.36.001698
http://dx.doi.org/10.1103/PhysRevA.85.043809
http://dx.doi.org/10.1103/PhysRevA.85.043809
http://dx.doi.org/10.1103/PhysRevA.82.011802
http://arXiv.org/abs/0912.2357
http://dx.doi.org/10.1103/PhysRevA.82.063822
http://dx.doi.org/10.1103/PhysRevA.82.063822
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.110.083605
http://arXiv.org/abs/1304.0029
http://dx.doi.org/10.1364/OL.37.004991
http://dx.doi.org/10.1103/PhysRevA.81.033813
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1140/epjd/e2003-00003-3
http://dx.doi.org/10.1140/epjd/e2003-00003-3
http://dx.doi.org/10.1103/PhysRevLett.88.203601
http://dx.doi.org/10.1103/PhysRevLett.88.203601


DRESSEL, LYONS, JORDAN, GRAHAM, AND KWIAT PHYSICAL REVIEW A 88, 023821 (2013)

[22] N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and
P. K. Lam, Science 301, 940 (2003).

[23] R. Drever, in Quantum Optics: Experimental Gravity and
Measurement Theory (Plenum, New York, 1983), pp. 525–566.

[24] B. J. Meers and K. A. Strain, Phys. Rev. D 43, 3117 (1991).
[25] D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdinger,
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