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Out-of-time-ordered correlators (OTOCs) have been proposed as a tool to witness quantum information
scrambling in many-body system dynamics. These correlators can be understood as averages over nonclassical
multitime quasiprobability distributions (QPDs). These QPDs have more information and their nonclassical
features witness quantum information scrambling in a more nuanced way. However, their high dimensionality
and nonclassicality make QPDs challenging to measure experimentally. We focus on the topical case of a
many-qubit system and show how to obtain such a QPD in the laboratory using circuits with three and four
sequential measurements. Averaging distinct values over the same measured distribution reveals either the OTOC
or parameters of its QPD. Stronger measurements minimize experimental resources despite increased dynamical
disturbance.
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I. INTRODUCTION

The out-of-time-ordered correlator (OTOC) has attracted
considerable recent attention in high-energy physics [1–15]
and condensed-matter physics [16–26]. It helps characterize
quantum information scrambling due to the spread of entan-
glement, and has found utility in applications ranging from
black hole thermalization to quantum chaos. Alongside the
theoretical effort, there has been increasing interest in finding
experimental methods to measure such a quantity in modern
quantum simulators (e.g., Refs. [27–31]). These controllable
quantum systems may be used to simulate and measure exotic
dynamics that are otherwise out of experimental reach, such
as quantum state teleportation through a traversable worm-
hole [32,33].

Expanding upon the idea of the OTOC, we recently in-
troduced a more refined and robust information-scrambling
witness by decomposing the OTOC into its extended (coarse-
grained) Kirkwood-Dirac [34–40] quasiprobability distribu-
tion (QPD) [41,42]. This QPD has since found utility in en-
tropic uncertainty relations for scrambling [43], and is closely
related to a witness for quantum advantage in postselected
metrology [44]. The OTOC signals interesting scrambling be-
havior when it decays to a persistently small value; to produce
this decay, its associated QPD must exhibit negative or nonreal
values, despite satisfying all other properties of a probability
distribution. The OTOC is an average over this QPD, so it has
less information than the full QPD about the probed system
dynamics. Moreover, while the OTOC can also decay due
to decoherence in a manner that seems qualitatively similar
to the decay from information scrambling, the nonclassical
features of the corresponding QPD can only diminish with
decoherence. As such, the QPD robustly distinguishes such
decoherence from scrambling [45], making it an attractive
candidate for experimental use.

The apparent problem with the QPD is that it is a four-
argument distribution, and thus seems to require the ex-
perimental measurement of many more parameters than the
OTOC. Indeed, for a qubit OTOC there are two real pa-
rameters to measure, but its corresponding QPD ostensibly
has 2 × 24 = 32 real parameters in the distribution. Without
a practical method of determining all the parameters com-
posing the QPD, its advantages compared to an OTOC are
reduced.

In this paper we show that a qubit QPD can be measured
using the same sequential measurement circuit used to deter-
mine the OTOC itself, which demonstrates that it is no more
difficult to measure in spite of its high dimensionality. We
accomplish this feat through two simplification steps. First,
we show that the 32 real parameters of the QPD are redundant
and can be reduced to eight independent correlators. Second,
we generalize the method that we introduced in Ref. [46]
for measuring qubit OTOCs using two circuits of sequential
measurements. We show that the same circuits also yield
all eight correlators that determine the QPD. Moreover, the
statistical error is minimal when all but the first measurement
are projective, with the first only slightly weakened.

This paper is organized as follows. In Sec. II we review
the OTOC and its associated QPD. In Sec. III we review se-
quential qubit measurements and the key results of Ref. [46].
In Sec. IV we detail how to measure the QPD efficiently. In
Sec. V we optimize the measurement strengths to minimize
statistical error. We conclude in Sec. VI.

II. OTOCs AND THEIR QPDs

We consider the important case of a lattice of locally
interacting qubits, such as those used in modern quantum
computing hardware. When such a multiqubit system evolves
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with a Hamiltonian H , the dynamics can cause initially
localized information to spread through the lattice. More
precisely, an initially localized single-qubit operator A will
typically evolve to have support over multiple lattice sites in
the Heisenberg picture, A(t ) = U †(t )AU (t ), with ih̄∂tU (t ) =
HU (t ) and U (0) = I . Integrable Hamiltonians cause periodic
evolution that will relocalize such an operator at a future
recurrence time. However, nonintegrable Hamiltonians can
have an exponentially longer recurrence time [12,47,48] that
persistently scrambles the information of the initially local
operators to cover the lattice. An OTOC and its QPD can
witness such information-scrambling behavior [45].

We assume in this paper that local qubit operators A and B
at distinct lattice sites square to the identity A2 = B2 = I and
initially commute [A, B] = 0. At later times t , however, B(t )
can evolve to overlap the initial support of A. We can detect
such emergent overlap by averaging the positive Hermitian
square of their commutator after evolving only B,

C(t ) := 〈[A, B(t )]†[A, B(t )]〉 = 2[1 − ReF (t )] � 0. (1)

Since A2 = B(t )2 = I for any t , C(t ) is determined by

F (t ) := 〈B(t )AB(t )A〉, (2)

which is an OTOC that satisfies F (0) = 1 and ReF (t ) � 1.
For a nonintegrable Hamiltonian, persistent noncommutativ-
ity of A and B(t ), i.e., C(t ) > 0, causes ReF (t ) to drop to a
small value for an extended duration [45].

The noncommutativity of A and B(t ) also precludes the
existence of a classical joint probability distribution over their
eigenvalues, so prevents the OTOC from being understood
as a simple eigenvalue average. Specifically, if we decom-
pose A and B into their eigenprojection operators �A

a and
�

B(t )
b , A = ∑

a=0,1(−1)a �A
a and B(t ) = ∑

b=0,1(−1)b �
B(t )
b ,

then the OTOC becomes an eigenvalue average

F (t ) =
∑

b′,a′,b,a=0,1

(−1)b′+a′+b+a p̃t (b
′, a′, b, a) (3)

over an extended Kirkwood-Dirac QPD [41,42]

p̃t (b
′, a′, b, a) := 〈

�
B(t )
b′ �A

a′�
B(t )
b �A

a

〉
. (4)

The QPD p̃t is normalized,
∑

p̃t = 1, and reduces to a classi-
cal probability distribution when A and B(t ) commute, but can
take imaginary and negative values when A and B(t ) do not
commute. Thus the interesting behavior of the OTOC F (t )
directly corresponds to when the aggregated nonclassicality
of the QPD, N (t ) := ∑ | p̃t | − 1 � 0, becomes nonzero [45].
This nonclassicality is a witness of information scrambling
that is more robust to experimental imperfections than the
OTOC itself [45].

III. SEQUENTIAL QUBIT MEASUREMENTS

We will measure the OTOC and its QPD with sequences of
informative and noninformative ancilla-based qubit measure-
ments. Our analysis extends that of Ref. [46], which provides
explicit implementation circuits and detailed derivations in its
Appendix.

An informative measurement of a qubit observable A corre-
lates the measured basis of an ancilla qubit with the eigenbasis

of A. Measuring a result a = 0, 1 on the ancilla then causes
(partial) collapse backaction in the basis of A. Such a partial
collapse modifies the state ρ �→ M (A)

φ,aρM†(A)
φ,a according to the

Kraus operators [46]

M (A)
φ,a := 1√

2

[
cos

φ

2
I + (−1)a sin

φ

2
A

]
. (5)

The parameter φ ∈ (0, π/2] is an angle that sets the mea-
surement strength [46], with φ = π/2 corresponding to a
projective measurement of the eigenbasis of A, and φ → 0
corresponding to the weak measurement limit that leaves ρ

nearly unperturbed. For any φ, averaging the ancilla-outcome
probabilities PA

φ (a) = tr(M (A)
φ,aρM (A)†

φ,a ) with the generalized
eigenvalues [49–51] αφ,a = (−1)a/ sin φ recovers the expec-
tation value 〈A〉 = ∑

a=0,1 αφ,aPA
φ (a).

A noninformative measurement causes phase backaction
by entangling the eigenbasis of A with a mutually unbi-
ased basis of the ancilla. Measuring the ancilla then gives
no information about A, but does produce a measurement-
controlled unitary effect generated by A on the initial state
ρ �→ N (A)

φ,aρN†(A)
φ,a , according to the Kraus operators

N (A)
φ,a := 1√

2

[
cos

φ

2
I − i(−1)a sin

φ

2
A

]
. (6)

As before, the angle φ ∈ (0, π/2] indicates the measurement
strength, ranging from weak perturbations with φ → 0 to
maximally distinct rotations with φ = π/2.

Performing a sequence of n informative measurements of
observables A1, A2, . . . , An, implemented by separate ancillas,
produces a joint probability distribution

PA1,...,An
φ1,...,φn

(a1, . . . , an)

:= tr
(
M (An )

φn,an
· · · M (A1 )

φ1,a1
ρM†(A1 )

φ1,a1
· · · M†(An )

φn,an

)
, (7)

where ai = 0, 1 is the outcome of the ith measurement. As
shown in Ref. [46], averaging this joint distribution with the
generalized eigenvalues αφi,ai = (−1)ai/ sin φi exactly pro-
duces a correlation function involving nested anticommutators
of A1, A2, . . . , An:

CA1,...,An :=
∑

a1,...,an

αφ1,a1 · · · αφn,an PA1,...,An
φ1,...,φn

(a1, . . . , an)

=
〈 {. . . {{An, An−1}, An−2} . . . , A1}

2n−1

〉
(8)

for all strength angles 0 < φi � π/2.
Replacing only the first informative measurement M (A1 )

φ1,a1

with a noninformative measurement N (A1 )
φ1,ã1

in a separate circuit
produces a modified joint distribution

P̃A1,...,An
φ1,...,φn

(ã1, . . . , an)

:= tr
(
M (An )

φn,an
· · · N (A1 )

φ1,ã1
ρ N†(A1 )

φ1,ã1
· · · M†(An )

φn,an

)
, (9)

where the notations P̃ and ã1 are used as a reminder of the
noninformative nature of the first measurement. Averaging
in the same way as in Eq. (8) exchanges the outermost
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anticommutator with a commutator [46]

C̃A1,...,An :=
∑

ã1,...,an

αφ1,ã1 · · · αφn,an P̃A1,...,An
φ1,...,φn

(ã1, . . . , an)

=
〈

[. . . {{An, An−1}, An−2} . . . , A1]

2n−1i

〉
. (10)

In Ref. [46] we showed that the OTOC F (t ) is completely
determined by four-measurement correlators CAB(t )AB(t ) and
C̃AB(t )AB(t ). We will now analyze sequences of both informative
and noninformative measurements more carefully to improve
upon this result and obtain all eight correlators needed to
construct the QPD p̃t .

IV. MEASURING A QPD

The QPD p̃t formally consists of 24 complex numbers,
so apparently it requires experimental determination of 32
real parameters. However, we can reduce this complexity
to just eight real parameters to measure [42]. Since A2 =
B2(t ) = I , we use the identities �A

a = [I + (−1)aA]/2 and
�

B(t )
b = [I + (−1)bB(t )]/2 to expand the QPD in Eq. (4)

into 24 terms that contain only eight real-valued correlators:
〈A〉, 〈B(t )〉, Re〈B(t )A〉, Im〈B(t )A〉, 〈B(t )AB(t )〉, 〈AB(t )A〉,
Re〈B(t )AB(t )A〉, and Im〈B(t )AB(t )A〉. Notably, two of these
correlators are the real and imaginary parts of the OTOC F (t )
itself, emphasizing that the QPD contains more information.
Once these eight independent correlators are determined, the
entire QPD may be reconstructed.

We now consider how to measure each correlator in turn by
strategically averaging sequential measurements as in Eqs. (8)
and (10). Our goal is to measure all needed terms with a
minimum amount of experimental resources, including both
the number of measurement circuits and the number of real-
izations of each required to obtain a desired statistical error.

We show that a single circuit with four informative mea-
surements can determine six of the eight correlators. The
remaining two correlators are determined by a related three-
measurement circuit that substitutes the first measurement
with a noninformative measurement. To be systematic, we
construct the circuit shown in Fig. 1 by adding one measure-
ment at a time.

A. One-measurement subcircuit

We start from the smallest subcircuit in Fig. 1(a) (red,
dashed) consisting of one informative measurement of A.
According to Eq. (8), we obtain 〈A〉 by averaging the values

ξA
a := αφa,a ≡ (−1)a

sin φa
(11)

over the distribution PA
φa

(a). We show later that the other
single-point correlator (i.e., expectation value) 〈B(t )〉 can be
obtained by the three-measurement subcircuit in Fig. 1(c)
(green, dot-dashed).

B. Two-measurement subcircuit

Adding an informative measurement of B(t ) produces the
two-measurement subcircuit in Fig. 1(b) (blue, dotted). As
discussed in Ref. [46], measuring B(t ) requires first evolving
the qubit system for a duration t , then coupling the eigenspace
of B to an ancilla, then backward evolving for a duration t . The
backwards evolution may be omitted if it occurs at the end
of the subcircuit. According to Eq. (8), averaging the simple
product

ξAB
a,b := αφa,a αφb,b (12)

over the joint distribution PA,B
φa,φb

(a, b) produces the correla-
tor CA,B = 〈{B(t ), A}〉/2 = Re〈B(t )A〉. Substituting the first
measurement with a noninformative measurement as in
Eq. (10) and averaging the same values ξAB

a,b yields C̃A,B =
〈[B(t ), A]〉/2i = Im〈B(t )A〉 instead [46]. For brevity, we omit
the time dependence of B(t ) in the remainder of the paper as
understood.

To elucidate the structure of this subcircuit, we compute
the measured distribution PA,B

φa,φb
(a, b). Using Eq. (5) we find

PA,B
φa,φb

(a, b) = 1

4

[
1 + (−1)a sin φa 〈A〉

+ (−1)b sin φb

(
cos2 φa

2
〈B〉+ sin2 φa

2
〈ABA〉

)

+ (−1)a+b sin φa sin φb
〈{B, A}〉

2

]
. (13)

(a) (b) (c) (d)

FIG. 1. Sequential measurement circuit. Repeated circuit realizations yield the joint distribution PA,B,A,B
φa,φb,φa′ ,φb′ (a, b, a′, b′) of ancilla-qubit

outcomes. Averaging this distribution with strategic values (see main text) yields the multiqubit out-of-time-ordered correlator F (t ) =
〈B(t )AB(t )A〉 and eight correlators that determine its corresponding quasiprobability distribution p̃t . (a) Averaging the one-measurement
subcircuit (red, dashed) produces 〈A〉. (b) Averaging the two-measurement subcircuit (blue, dotted) produces Re〈B(t )A〉. (c) Averaging the
three-measurement subcircuit (green, dot-dashed) produces 〈B(t )〉, 〈AB(t )A〉, and Re〈B(t )AB(t )A〉. (d) Averaging the four-measurement circuit
produces 〈B(t )AB(t )〉. To obtain the final two correlators Im〈B(t )A〉 and Im〈B(t )AB(t )A〉 that determine p̃t , the first informative measurement
M̂ (A)

φa,a should be replaced with a noninformative measurement N̂ (A)
φa,a (see text for details), and the last measurement may be omitted.
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This form shows that marginalizing over b = 0, 1 cancels the
last two lines to recover the result for the one-measurement
subcircuit. However, marginalizing over a = 0, 1 and averag-
ing b with the generalized eigenvalues αφb,b = (−1)b/ sin φb

only cancels the terms with 〈A〉 and 〈{B, A}〉 to leave a
linear combination of 〈B〉 and 〈ABA〉, making it impossible
to isolate those two correlators independently. Intuitively, the
first measurement of A (partially) collapses the state, which
correlates the result of the second measurement with the first.

Note that if we perform a weak measurement of the
observable A with φa ≈ 0, then the prefactor of 〈ABA〉 in
Eq. (13) becomes negligible compared to 〈B〉 because it is
quadratic in φa. In this case, the marginalization of Eq. (13)
approximates P(b), from which we can isolate 〈B〉. However,
weak measurements require more experimental realizations to
minimize statistical error, so instead we will directly isolate
both 〈B〉 and 〈ABA〉 after adding one more measurement of A.

C. Three-measurement subcircuit

Adding an informative measurement of A yields the three-
measurement subcircuit in Fig. 1(c) (green, dot-dashed). The
joint probability distribution of the measured outcomes is then
PA,B,A

φa,φb,φa′ (a, b, a′). The structure of this distribution is similar
to that of Eq. (13), but we omit its full form for brevity.
This joint distribution will allow us to obtain the correlators
〈B〉, 〈ABA〉, and Re〈BABA〉, while the modified distribution
P̃A,B,A

φa,φb,φa′ (ã, b, a′) will produce Im〈BABA〉.
Following Eq. (8), averaging PA,B,A

φa,φb,φa′ (a, b, a′) with the
product αφa,a αφb,b αφa′ ,a′ produces the correlator CA,B,A =
〈{{A, B}, A}/4〉 = 〈B + ABA〉/2. This result produces a sec-
ond linear combination of 〈B〉 and 〈ABA〉, which we can
combine with a partial average of Eq. (13) to isolate both 〈B〉
and 〈ABA〉 separately. Solving this linear system to obtain 〈B〉
yields the effective values

ξB
a,b,a′ := αφb,b − 2αφa,a αφb,b αφa′ ,a′ sin2(φa/2)

cos φa
(14)

to average over the distribution PA,B,A
φa,φb,φa′ (a, b, a′). Similarly, to

obtain 〈ABA〉 we average the values

ξABA
a,b,a′ := 2αφa,a αφb,b αφa′ ,a′ − ξB

a,b,a′ . (15)

We note two important subtleties of this result. First, B may
be isolated in the measurement sequence (A, B, A) because
the first A measurement algebraically cancels with the final
A measurement, which is only possible because A2 = I . Sur-
prisingly, the later measurement allows us to “undo” the effect
of the earlier measurement. Second, this cancellation is only
possible when the first measurement is not projective, φa �=
π/2. Intuitively, a projective measurement would irreversibly
collapse the state, preventing information from being retrieved
and canceled. However, cancellation is possible with any other
measurement strength 0 < φa < π/2.

In addition to 〈B〉 and 〈ABA〉, we can also obtain the OTOC
itself Re〈BABA〉 from the distribution PA,B,A

φa,φb,φa′ (a, b, a′). Much

as PA,B
φa,φb

(a, b) in Eq. (13) contains 〈ABA〉, the OTOC appears
in backaction terms. To extract Re〈BABA〉 directly, we average

the values

ξReBABA
a,b,a′ := αφa,a αφa′ ,a′ − cos2(φb/2)

sin2(φb/2)
(16)

over the joint distribution PA,B,A
φa,φb,φa′ (a, b, a′). This result simpli-

fies the OTOC-measuring protocol in Ref. [46] by removing
the need for a fourth measurement.

To extract the imaginary part of the OTOC Im〈BABA〉 we
replace M (A)

φa,a
with N (A)

φã,ã
in Fig. 1(c) and average the values

ξ ImBABA
ã,b,a′ := αφã,ã αφa′ ,a′

sin2(φb/2)
(17)

over the modified joint distribution P̃A,B,A
φã,φb,φa′ (ã, b, a′).

So far we have obtained seven of the eight correlators
needed to determine the OTOC QPD, with only 〈BAB〉 re-
maining. Unfortunately, the three-measurement circuit is not
sufficient for the same reason that 〈B〉 could not be obtained
from the sequence (A, B) in Eq. (13). That is, after marginal-
izing a and b then averaging a′ we find∑

a,b,a′
αφa′ ,a′PA,B,A

φa,φb,φa′ (a, b, a′)

= cos2 φb

2
〈A〉 + sin2 φb

2
cos2 φa

2
〈BAB〉

+ sin2 φb

2
sin2 φa

2
〈ABABA〉. (18)

The correlator 〈BAB〉 appears in a linear combination with
both 〈A〉 and 〈ABABA〉, and so cannot be isolated unless the
first measurement is made weak with φa ≈ 0.

D. Four-measurement circuit

Adding one last informative measurement of A produces
the full circuit in Fig. 1(d). The remaining 〈BAB〉 correlator
can then be isolated. As with the 〈B〉 correlator, the effect
of the first A measurement is undone by subsequent mea-
surements; however, the cancellation is more complicated
and involves measurement backaction terms similar to the
OTOC correlators in the previous section. To extract 〈BAB〉,
we average the values

ξBAB
a,b,a′,b′ := 1

cos φa

[
− αφa,a + 2αφb,bαφa′ ,a′αφb′ ,b′

− 2αφa,aαφb,bαφb′ ,b′
sin2(φa/2)

sin2(φa′/2)

+ 2αφa,a
sin2(φa/2) cos2(φa′/2)

sin2(φa′/2)

]
(19)

over the joint distribution PA,B,A,B
φa,φb,φa′ ,φb′ (a, b, a′, b′). As with the

correlator 〈B〉, needed cancellations only occur if the first
measurement is not projective, φa �= π/2.

Notably, in Ref. [46] we used precisely the same
four-measurement circuit as in Fig. 1 to obtain the
real part of the OTOC Re〈B(t )AB(t )A〉 itself. As such,
once we add this fourth measurement to the circuit, we
can use the previously derived four-measurement values
ξReBABA

a,b,a′,b′ = 2αφa,aαφb,bαφa′ ,a′αφb′ ,b′ − 1 as an alternative to
the three-measurement values we introduced in Eq. (16).
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Similarly, as an alternative to Eq. (17), Im〈BABA〉 can be ob-
tained by averaging the four-measurement values ξ ImBABA

a,b,a′,b′ =
2αφã,ãαφb,bαφa′ ,a′αφb′ ,b′ over the circuit variation with a nonin-
formative first measurement.

V. OPTIMIZING MEASUREMENT STRENGTH

All preceding derivations assumed arbitrary strength mea-
surements and ideal probability distributions. However, in
practice one measures realization frequencies in the labora-
tory, so both the experiment time and the statistical error must
be taken into account. For a finite ensemble of realizations N
the squared deviation of the mean value, (	ξ̄ )2 = ∑N

k=1(ξk −
ξ̄ )2/N2 � (max j ξ

2
j )/N , is bounded from above by the largest

averaged value. Here k ranges over realizations and j ranges
over possible outcomes in one realization. Fixing the ex-
periment time for one circuit realization and the admissible
realization number N , we should minimize this deviation of
the mean to conserve experimental resources.

As an example of this procedure, we examine the statistical
error for one of the 16 QPD values:

Re〈�A
+�

B(t )
+ �A

+�
B(t )
+ 〉 N→∞←−−− 1

16N

×
N∑

k=1

[
3+ 3ξA

k + 3ξB
k + 4ξReAB

k + ξBAB
k + ξABA

k + ξReBABA
k

]
,

(20)

where each k is a particular realization of the measurement
sequence (a, b, a′, b′). To minimize the statistical error, we
minimize the largest averaged value in this sum over all free
parameters φa, φb, φa′ , and φb′ . Numerical minimization yields
different optimal strengths for each QPD value, with the one
in Eq. (20) having strengths

φb = φa′ = φb′ = π/2, φa ≈ (0.67)π/2. (21)

For all QPD values, all measurements are optimally projective
except the first measurement, which has an optimum that is
still reasonably strong [φa ≈ (0.47) π/2 or φa ≈ (0.67)π/2].

A similar computation for the corresponding imaginary part
Im〈�A

+�
B(t )
+ �A

+�
B(t )
+ 〉 shows that projective measurements

are always optimal for all measurements.

VI. CONCLUSIONS

For multiqubit systems possessing local observables that
square to the identity, we have reduced the problem of mea-
suring the QPD behind the OTOC to that of determining
eight independent real-valued correlators, in contrast to the 24

complex parameters that ostensibly comprise the distribution.
Six of these correlators can be constructed from one data set
of the four-measurement circuit shown in Fig. 1. To minimize
statistical error, all but the first measurement can be made
projective, with only a slight strength reduction needed for
the first measurement. The remaining two correlators can be
obtained from a second data set from a slight variation of
the same circuit that replaces the first measurement with a
noninformative measurement and uses only three projective
measurements. These simplifications greatly reduce the exper-
imental difficulty for determining such a QPD.

The present work demonstrates that the same circuit used
to sequentially measure a multiqubit OTOC can also be used
to determine all eight correlators needed to parametrize the
QPD behind the OTOC. Thus, for qubits, the QPD is no more
difficult to measure with sequential measurements than the
OTOC alone. We expect that measurements of this sort are
presently attainable in modern quantum computing hardware.
We also expect that aspects of this work may be extended to
qutrits and higher-dimensional systems, where the assumption
that observables square to the identity breaks down.
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